qmk_firmware/drivers/oled/oled_driver.c
XScorpion2 ec3954577c (OLED) Added support for CR (#6399)
Currently OLED Dirver only supports LF (\n) character in a string to clear out the rest of the current line and advance to the next line for writing. This PR adds support for CR (\r) character as well to advance to the next line, however not clear out the rest of the current line. This is extremely useful when you want to display a multi-line logo using a single array without wiping out exiting lines and flagging the OLED as dirty unnecessarily.
2019-07-27 13:17:18 -07:00

566 lines
17 KiB
C

/*
Copyright 2019 Ryan Caltabiano <https://github.com/XScorpion2>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "i2c_master.h"
#include "oled_driver.h"
#include OLED_FONT_H
#include "timer.h"
#include "print.h"
#include <string.h>
#if defined(__AVR__)
#include <avr/io.h>
#include <avr/pgmspace.h>
#elif defined(ESP8266)
#include <pgmspace.h>
#else // defined(ESP8266)
#define PROGMEM
#define memcpy_P(des, src, len) memcpy(des, src, len)
#endif // defined(__AVR__)
// Used commands from spec sheet: https://cdn-shop.adafruit.com/datasheets/SSD1306.pdf
// for SH1106: https://www.velleman.eu/downloads/29/infosheets/sh1106_datasheet.pdf
// Fundamental Commands
#define CONTRAST 0x81
#define DISPLAY_ALL_ON 0xA5
#define DISPLAY_ALL_ON_RESUME 0xA4
#define NORMAL_DISPLAY 0xA6
#define DISPLAY_ON 0xAF
#define DISPLAY_OFF 0xAE
#define NOP 0xE3
// Scrolling Commands
#define ACTIVATE_SCROLL 0x2F
#define DEACTIVATE_SCROLL 0x2E
#define SCROLL_RIGHT 0x26
#define SCROLL_LEFT 0x27
#define SCROLL_RIGHT_UP 0x29
#define SCROLL_LEFT_UP 0x2A
// Addressing Setting Commands
#define MEMORY_MODE 0x20
#define COLUMN_ADDR 0x21
#define PAGE_ADDR 0x22
#define PAM_SETCOLUMN_LSB 0x00
#define PAM_SETCOLUMN_MSB 0x10
#define PAM_PAGE_ADDR 0xB0 // 0xb0 -- 0xb7
// Hardware Configuration Commands
#define DISPLAY_START_LINE 0x40
#define SEGMENT_REMAP 0xA0
#define SEGMENT_REMAP_INV 0xA1
#define MULTIPLEX_RATIO 0xA8
#define COM_SCAN_INC 0xC0
#define COM_SCAN_DEC 0xC8
#define DISPLAY_OFFSET 0xD3
#define COM_PINS 0xDA
#define COM_PINS_SEQ 0x02
#define COM_PINS_ALT 0x12
#define COM_PINS_SEQ_LR 0x22
#define COM_PINS_ALT_LR 0x32
// Timing & Driving Commands
#define DISPLAY_CLOCK 0xD5
#define PRE_CHARGE_PERIOD 0xD9
#define VCOM_DETECT 0xDB
// Charge Pump Commands
#define CHARGE_PUMP 0x8D
// Misc defines
#define OLED_TIMEOUT 60000
#define OLED_BLOCK_COUNT (sizeof(OLED_BLOCK_TYPE) * 8)
#define OLED_BLOCK_SIZE (OLED_MATRIX_SIZE / OLED_BLOCK_COUNT)
// i2c defines
#define I2C_CMD 0x00
#define I2C_DATA 0x40
#if defined(__AVR__)
// already defined on ARM
#define I2C_TIMEOUT 100
#define I2C_TRANSMIT_P(data) i2c_transmit_P((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
#else // defined(__AVR__)
#define I2C_TRANSMIT_P(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
#endif // defined(__AVR__)
#define I2C_TRANSMIT(data) i2c_transmit((OLED_DISPLAY_ADDRESS << 1), &data[0], sizeof(data), I2C_TIMEOUT)
#define I2C_WRITE_REG(mode, data, size) i2c_writeReg((OLED_DISPLAY_ADDRESS << 1), mode, data, size, I2C_TIMEOUT)
#define HAS_FLAGS(bits, flags) ((bits & flags) == flags)
// Display buffer's is the same as the OLED memory layout
// this is so we don't end up with rounding errors with
// parts of the display unusable or don't get cleared correctly
// and also allows for drawing & inverting
uint8_t oled_buffer[OLED_MATRIX_SIZE];
uint8_t* oled_cursor;
OLED_BLOCK_TYPE oled_dirty = 0;
bool oled_initialized = false;
bool oled_active = false;
bool oled_scrolling = false;
uint8_t oled_rotation = 0;
uint8_t oled_rotation_width = 0;
#if !defined(OLED_DISABLE_TIMEOUT)
uint16_t oled_last_activity;
#endif
// Internal variables to reduce math instructions
#if defined(__AVR__)
// identical to i2c_transmit, but for PROGMEM since all initialization is in PROGMEM arrays currently
// probably should move this into i2c_master...
static i2c_status_t i2c_transmit_P(uint8_t address, const uint8_t* data, uint16_t length, uint16_t timeout) {
i2c_status_t status = i2c_start(address | I2C_WRITE, timeout);
for (uint16_t i = 0; i < length && status >= 0; i++) {
status = i2c_write(pgm_read_byte((const char*)data++), timeout);
if (status) break;
}
i2c_stop();
return status;
}
#endif
// Flips the rendering bits for a character at the current cursor position
static void InvertCharacter(uint8_t *cursor)
{
const uint8_t *end = cursor + OLED_FONT_WIDTH;
while (cursor < end) {
*cursor = ~(*cursor);
cursor++;
}
}
bool oled_init(uint8_t rotation) {
oled_rotation = oled_init_user(rotation);
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
oled_rotation_width = OLED_DISPLAY_WIDTH;
} else {
oled_rotation_width = OLED_DISPLAY_HEIGHT;
}
i2c_init();
static const uint8_t PROGMEM display_setup1[] = {
I2C_CMD,
DISPLAY_OFF,
DISPLAY_CLOCK, 0x80,
MULTIPLEX_RATIO, OLED_DISPLAY_HEIGHT - 1,
DISPLAY_OFFSET, 0x00,
DISPLAY_START_LINE | 0x00,
CHARGE_PUMP, 0x14,
#if (OLED_IC != OLED_IC_SH1106)
// MEMORY_MODE is unsupported on SH1106 (Page Addressing only)
MEMORY_MODE, 0x00, // Horizontal addressing mode
#endif
};
if (I2C_TRANSMIT_P(display_setup1) != I2C_STATUS_SUCCESS) {
print("oled_init cmd set 1 failed\n");
return false;
}
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_180)) {
static const uint8_t PROGMEM display_normal[] = {
I2C_CMD,
SEGMENT_REMAP_INV,
COM_SCAN_DEC };
if (I2C_TRANSMIT_P(display_normal) != I2C_STATUS_SUCCESS) {
print("oled_init cmd normal rotation failed\n");
return false;
}
} else {
static const uint8_t PROGMEM display_flipped[] = {
I2C_CMD,
SEGMENT_REMAP,
COM_SCAN_INC };
if (I2C_TRANSMIT_P(display_flipped) != I2C_STATUS_SUCCESS) {
print("display_flipped failed\n");
return false;
}
}
static const uint8_t PROGMEM display_setup2[] = {
I2C_CMD,
COM_PINS, OLED_COM_PINS,
CONTRAST, 0x8F,
PRE_CHARGE_PERIOD, 0xF1,
VCOM_DETECT, 0x40,
DISPLAY_ALL_ON_RESUME,
NORMAL_DISPLAY,
DEACTIVATE_SCROLL,
DISPLAY_ON };
if (I2C_TRANSMIT_P(display_setup2) != I2C_STATUS_SUCCESS) {
print("display_setup2 failed\n");
return false;
}
oled_clear();
oled_initialized = true;
oled_active = true;
oled_scrolling = false;
return true;
}
__attribute__((weak))
oled_rotation_t oled_init_user(oled_rotation_t rotation) {
return rotation;
}
void oled_clear(void) {
memset(oled_buffer, 0, sizeof(oled_buffer));
oled_cursor = &oled_buffer[0];
oled_dirty = -1; // -1 will be max value as long as display_dirty is unsigned type
}
static void calc_bounds(uint8_t update_start, uint8_t* cmd_array)
{
// Calculate commands to set memory addressing bounds.
uint8_t start_page = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_WIDTH;
uint8_t start_column = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_WIDTH;
#if (OLED_IC == OLED_IC_SH1106)
// Commands for Page Addressing Mode. Sets starting page and column; has no end bound.
// Column value must be split into high and low nybble and sent as two commands.
cmd_array[0] = PAM_PAGE_ADDR | start_page;
cmd_array[1] = PAM_SETCOLUMN_LSB | ((OLED_COLUMN_OFFSET + start_column) & 0x0f);
cmd_array[2] = PAM_SETCOLUMN_MSB | ((OLED_COLUMN_OFFSET + start_column) >> 4 & 0x0f);
cmd_array[3] = NOP;
cmd_array[4] = NOP;
cmd_array[5] = NOP;
#else
// Commands for use in Horizontal Addressing mode.
cmd_array[1] = start_column;
cmd_array[4] = start_page;
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) % OLED_DISPLAY_WIDTH + cmd_array[1];
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_WIDTH - 1) / OLED_DISPLAY_WIDTH - 1;
#endif
}
static void calc_bounds_90(uint8_t update_start, uint8_t* cmd_array)
{
cmd_array[1] = OLED_BLOCK_SIZE * update_start / OLED_DISPLAY_HEIGHT * 8;
cmd_array[4] = OLED_BLOCK_SIZE * update_start % OLED_DISPLAY_HEIGHT;
cmd_array[2] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) / OLED_DISPLAY_HEIGHT * 8 - 1 + cmd_array[1];;
cmd_array[5] = (OLED_BLOCK_SIZE + OLED_DISPLAY_HEIGHT - 1) % OLED_DISPLAY_HEIGHT / 8;
}
uint8_t crot(uint8_t a, int8_t n)
{
const uint8_t mask = 0x7;
n &= mask;
return a << n | a >> (-n & mask);
}
static void rotate_90(const uint8_t* src, uint8_t* dest)
{
for (uint8_t i = 0, shift = 7; i < 8; ++i, --shift) {
uint8_t selector = (1 << i);
for (uint8_t j = 0; j < 8; ++j) {
dest[i] |= crot(src[j] & selector, shift - (int8_t)j);
}
}
}
void oled_render(void) {
// Do we have work to do?
if (!oled_dirty || oled_scrolling) {
return;
}
// Find first dirty block
uint8_t update_start = 0;
while (!(oled_dirty & (1 << update_start))) { ++update_start; }
// Set column & page position
static uint8_t display_start[] = {
I2C_CMD,
COLUMN_ADDR, 0, OLED_DISPLAY_WIDTH - 1,
PAGE_ADDR, 0, OLED_DISPLAY_HEIGHT / 8 - 1 };
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
calc_bounds(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
} else {
calc_bounds_90(update_start, &display_start[1]); // Offset from I2C_CMD byte at the start
}
// Send column & page position
if (I2C_TRANSMIT(display_start) != I2C_STATUS_SUCCESS) {
print("oled_render offset command failed\n");
return;
}
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
// Send render data chunk as is
if (I2C_WRITE_REG(I2C_DATA, &oled_buffer[OLED_BLOCK_SIZE * update_start], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
print("oled_render data failed\n");
return;
}
} else {
// Rotate the render chunks
const static uint8_t source_map[] = OLED_SOURCE_MAP;
const static uint8_t target_map[] = OLED_TARGET_MAP;
static uint8_t temp_buffer[OLED_BLOCK_SIZE];
memset(temp_buffer, 0, sizeof(temp_buffer));
for(uint8_t i = 0; i < sizeof(source_map); ++i) {
rotate_90(&oled_buffer[OLED_BLOCK_SIZE * update_start + source_map[i]], &temp_buffer[target_map[i]]);
}
// Send render data chunk after rotating
if (I2C_WRITE_REG(I2C_DATA, &temp_buffer[0], OLED_BLOCK_SIZE) != I2C_STATUS_SUCCESS) {
print("oled_render90 data failed\n");
return;
}
}
// Turn on display if it is off
oled_on();
// Clear dirty flag
oled_dirty &= ~(1 << update_start);
}
void oled_set_cursor(uint8_t col, uint8_t line) {
uint16_t index = line * oled_rotation_width + col * OLED_FONT_WIDTH;
// Out of bounds?
if (index >= OLED_MATRIX_SIZE) {
index = 0;
}
oled_cursor = &oled_buffer[index];
}
void oled_advance_page(bool clearPageRemainder) {
uint16_t index = oled_cursor - &oled_buffer[0];
uint8_t remaining = oled_rotation_width - (index % oled_rotation_width);
if (clearPageRemainder) {
// Remaining Char count
remaining = remaining / OLED_FONT_WIDTH;
// Write empty character until next line
while (remaining--)
oled_write_char(' ', false);
} else {
// Next page index out of bounds?
if (index + remaining >= OLED_MATRIX_SIZE) {
index = 0;
remaining = 0;
}
oled_cursor = &oled_buffer[index + remaining];
}
}
void oled_advance_char(void) {
uint16_t nextIndex = oled_cursor - &oled_buffer[0] + OLED_FONT_WIDTH;
uint8_t remainingSpace = oled_rotation_width - (nextIndex % oled_rotation_width);
// Do we have enough space on the current line for the next character
if (remainingSpace < OLED_FONT_WIDTH) {
nextIndex += remainingSpace;
}
// Did we go out of bounds
if (nextIndex >= OLED_MATRIX_SIZE) {
nextIndex = 0;
}
// Update cursor position
oled_cursor = &oled_buffer[nextIndex];
}
// Main handler that writes character data to the display buffer
void oled_write_char(const char data, bool invert) {
// Advance to the next line if newline
if (data == '\n') {
// Old source wrote ' ' until end of line...
oled_advance_page(true);
return;
}
if (data == '\r') {
oled_advance_page(false);
return;
}
// copy the current render buffer to check for dirty after
static uint8_t oled_temp_buffer[OLED_FONT_WIDTH];
memcpy(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH);
// set the reder buffer data
uint8_t cast_data = (uint8_t)data; // font based on unsigned type for index
if (cast_data < OLED_FONT_START || cast_data > OLED_FONT_END) {
memset(oled_cursor, 0x00, OLED_FONT_WIDTH);
} else {
const uint8_t *glyph = &font[(cast_data - OLED_FONT_START) * OLED_FONT_WIDTH];
memcpy_P(oled_cursor, glyph, OLED_FONT_WIDTH);
}
// Invert if needed
if (invert) {
InvertCharacter(oled_cursor);
}
// Dirty check
if (memcmp(&oled_temp_buffer, oled_cursor, OLED_FONT_WIDTH)) {
uint16_t index = oled_cursor - &oled_buffer[0];
oled_dirty |= (1 << (index / OLED_BLOCK_SIZE));
// Edgecase check if the written data spans the 2 chunks
oled_dirty |= (1 << ((index + OLED_FONT_WIDTH) / OLED_BLOCK_SIZE));
}
// Finally move to the next char
oled_advance_char();
}
void oled_write(const char *data, bool invert) {
const char *end = data + strlen(data);
while (data < end) {
oled_write_char(*data, invert);
data++;
}
}
void oled_write_ln(const char *data, bool invert) {
oled_write(data, invert);
oled_advance_page(true);
}
#if defined(__AVR__)
void oled_write_P(const char *data, bool invert) {
uint8_t c = pgm_read_byte(data);
while (c != 0) {
oled_write_char(c, invert);
c = pgm_read_byte(++data);
}
}
void oled_write_ln_P(const char *data, bool invert) {
oled_write_P(data, invert);
oled_advance_page(true);
}
#endif // defined(__AVR__)
bool oled_on(void) {
#if !defined(OLED_DISABLE_TIMEOUT)
oled_last_activity = timer_read();
#endif
static const uint8_t PROGMEM display_on[] = { I2C_CMD, DISPLAY_ON };
if (!oled_active) {
if (I2C_TRANSMIT_P(display_on) != I2C_STATUS_SUCCESS) {
print("oled_on cmd failed\n");
return oled_active;
}
oled_active = true;
}
return oled_active;
}
bool oled_off(void) {
static const uint8_t PROGMEM display_off[] = { I2C_CMD, DISPLAY_OFF };
if (oled_active) {
if (I2C_TRANSMIT_P(display_off) != I2C_STATUS_SUCCESS) {
print("oled_off cmd failed\n");
return oled_active;
}
oled_active = false;
}
return !oled_active;
}
bool oled_scroll_right(void) {
// Dont enable scrolling if we need to update the display
// This prevents scrolling of bad data from starting the scroll too early after init
if (!oled_dirty && !oled_scrolling) {
static const uint8_t PROGMEM display_scroll_right[] = {
I2C_CMD, SCROLL_RIGHT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
if (I2C_TRANSMIT_P(display_scroll_right) != I2C_STATUS_SUCCESS) {
print("oled_scroll_right cmd failed\n");
return oled_scrolling;
}
oled_scrolling = true;
}
return oled_scrolling;
}
bool oled_scroll_left(void) {
// Dont enable scrolling if we need to update the display
// This prevents scrolling of bad data from starting the scroll too early after init
if (!oled_dirty && !oled_scrolling) {
static const uint8_t PROGMEM display_scroll_left[] = {
I2C_CMD, SCROLL_LEFT, 0x00, 0x00, 0x00, 0x0F, 0x00, 0xFF, ACTIVATE_SCROLL };
if (I2C_TRANSMIT_P(display_scroll_left) != I2C_STATUS_SUCCESS) {
print("oled_scroll_left cmd failed\n");
return oled_scrolling;
}
oled_scrolling = true;
}
return oled_scrolling;
}
bool oled_scroll_off(void) {
if (oled_scrolling) {
static const uint8_t PROGMEM display_scroll_off[] = { I2C_CMD, DEACTIVATE_SCROLL };
if (I2C_TRANSMIT_P(display_scroll_off) != I2C_STATUS_SUCCESS) {
print("oled_scroll_off cmd failed\n");
return oled_scrolling;
}
oled_scrolling = false;
}
return !oled_scrolling;
}
uint8_t oled_max_chars(void) {
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
return OLED_DISPLAY_WIDTH / OLED_FONT_WIDTH;
}
return OLED_DISPLAY_HEIGHT / OLED_FONT_WIDTH;
}
uint8_t oled_max_lines(void) {
if (!HAS_FLAGS(oled_rotation, OLED_ROTATION_90)) {
return OLED_DISPLAY_HEIGHT / OLED_FONT_HEIGHT;
}
return OLED_DISPLAY_WIDTH / OLED_FONT_HEIGHT;
}
void oled_task(void) {
if (!oled_initialized) {
return;
}
oled_set_cursor(0, 0);
oled_task_user();
// Smart render system, no need to check for dirty
oled_render();
// Display timeout check
#if !defined(OLED_DISABLE_TIMEOUT)
if (oled_active && timer_elapsed(oled_last_activity) > OLED_TIMEOUT) {
oled_off();
}
#endif
}
__attribute__((weak))
void oled_task_user(void) {
}