[Keyboard] Add Orbit keyboard (#5306)

* Get things working except indicators

* Attempt to get things working

* hmm

* Compiles but doesn't run

* Make data transfer work

* Get all indicators working

* Remove old transport

* Prepare for pullreq

* Revert keymap from testing to production

* Final error checking for pull request

* Remove autogenerated is_command from config.h

* Rewrite pin toggles using qmk functions
This commit is contained in:
ai03 2019-03-10 19:57:36 -07:00 committed by Drashna Jaelre
parent ad12acd3c0
commit 9bea41c9b2
18 changed files with 2079 additions and 0 deletions

View File

@ -0,0 +1,249 @@
/*
Copyright 2018 Ryota Goto
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xA103
#define PRODUCT_ID 0x0003
#define DEVICE_VER 0x0003
#define MANUFACTURER ai03 Keyboard Designs
#define PRODUCT Orbit
#define DESCRIPTION Split ergonomic keyboard
/* key matrix size */
#define MATRIX_ROWS 10 // Double rows for split keyboards. Orbit has 5, so define 10
#define MATRIX_COLS 7
/*
* Keyboard Matrix Assignments
*
* Change this to how you wired your keyboard
* COLS: AVR pins used for columns, left to right
* ROWS: AVR pins used for rows, top to bottom
* DIODE_DIRECTION: COL2ROW = COL = Anode (+), ROW = Cathode (-, marked on diode)
* ROW2COL = ROW = Anode (+), COL = Cathode (-, marked on diode)
*
*/
#define MATRIX_ROW_PINS { F7, F6, F5, F4, D3 }
#define MATRIX_COL_PINS { C7, B4, D7, D6, D4, F1, F0 }
#define MATRIX_ROW_PINS_RIGHT { B6, B5, B4, D7, E6 }
#define MATRIX_COL_PINS_RIGHT { D4, D6, F1, F0, F4, F5, C6 }
#define SPLIT_HAND_PIN D5
//#define USE_I2C
#define SELECT_SOFT_SERIAL_SPEED 1
#define UNUSED_PINS
/* COL2ROW, ROW2COL, or CUSTOM_MATRIX */
#define DIODE_DIRECTION COL2ROW
/*
* Split Keyboard specific options, make sure you have 'SPLIT_KEYBOARD = yes' in your rules.mk, and define SOFT_SERIAL_PIN.
*/
#define SOFT_SERIAL_PIN D0 // or D1, D2, D3, E6
#define BACKLIGHT_PIN B7
// #define BACKLIGHT_BREATHING
#define BACKLIGHT_LEVELS 3
// #define RGB_DI_PIN E2
// #ifdef RGB_DI_PIN
// #define RGBLED_NUM 16
// #define RGBLIGHT_HUE_STEP 8
// #define RGBLIGHT_SAT_STEP 8
// #define RGBLIGHT_VAL_STEP 8
// #define RGBLIGHT_LIMIT_VAL 255 /* The maximum brightness level */
// #define RGBLIGHT_SLEEP /* If defined, the RGB lighting will be switched off when the host goes to sleep */
// /*== all animations enable ==*/
// #define RGBLIGHT_ANIMATIONS
// /*== or choose animations ==*/
// #define RGBLIGHT_EFFECT_BREATHING
// #define RGBLIGHT_EFFECT_RAINBOW_MOOD
// #define RGBLIGHT_EFFECT_RAINBOW_SWIRL
// #define RGBLIGHT_EFFECT_SNAKE
// #define RGBLIGHT_EFFECT_KNIGHT
// #define RGBLIGHT_EFFECT_CHRISTMAS
// #define RGBLIGHT_EFFECT_STATIC_GRADIENT
// #define RGBLIGHT_EFFECT_RGB_TEST
// #define RGBLIGHT_EFFECT_ALTERNATING
// #endif
/* Debounce reduces chatter (unintended double-presses) - set 0 if debouncing is not needed */
#define DEBOUNCING_DELAY 5
/* define if matrix has ghost (lacks anti-ghosting diodes) */
//#define MATRIX_HAS_GHOST
/* number of backlight levels */
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/* If defined, GRAVE_ESC will always act as ESC when CTRL is held.
* This is userful for the Windows task manager shortcut (ctrl+shift+esc).
*/
// #define GRAVE_ESC_CTRL_OVERRIDE
/*
* Force NKRO
*
* Force NKRO (nKey Rollover) to be enabled by default, regardless of the saved
* state in the bootmagic EEPROM settings. (Note that NKRO must be enabled in the
* makefile for this to work.)
*
* If forced on, NKRO can be disabled via magic key (default = LShift+RShift+N)
* until the next keyboard reset.
*
* NKRO may prevent your keystrokes from being detected in the BIOS, but it is
* fully operational during normal computer usage.
*
* For a less heavy-handed approach, enable NKRO via magic key (LShift+RShift+N)
* or via bootmagic (hold SPACE+N while plugging in the keyboard). Once set by
* bootmagic, NKRO mode will always be enabled until it is toggled again during a
* power-up.
*
*/
//#define FORCE_NKRO
/*
* Magic Key Options
*
* Magic keys are hotkey commands that allow control over firmware functions of
* the keyboard. They are best used in combination with the HID Listen program,
* found here: https://www.pjrc.com/teensy/hid_listen.html
*
* The options below allow the magic key functionality to be changed. This is
* useful if your keyboard/keypad is missing keys and you want magic key support.
*
*/
/* control how magic key switches layers */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS true
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM false
/* override magic key keymap */
//#define MAGIC_KEY_SWITCH_LAYER_WITH_FKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_NKEYS
//#define MAGIC_KEY_SWITCH_LAYER_WITH_CUSTOM
//#define MAGIC_KEY_HELP1 H
//#define MAGIC_KEY_HELP2 SLASH
//#define MAGIC_KEY_DEBUG D
//#define MAGIC_KEY_DEBUG_MATRIX X
//#define MAGIC_KEY_DEBUG_KBD K
//#define MAGIC_KEY_DEBUG_MOUSE M
//#define MAGIC_KEY_VERSION V
//#define MAGIC_KEY_STATUS S
//#define MAGIC_KEY_CONSOLE C
//#define MAGIC_KEY_LAYER0_ALT1 ESC
//#define MAGIC_KEY_LAYER0_ALT2 GRAVE
//#define MAGIC_KEY_LAYER0 0
//#define MAGIC_KEY_LAYER1 1
//#define MAGIC_KEY_LAYER2 2
//#define MAGIC_KEY_LAYER3 3
//#define MAGIC_KEY_LAYER4 4
//#define MAGIC_KEY_LAYER5 5
//#define MAGIC_KEY_LAYER6 6
//#define MAGIC_KEY_LAYER7 7
//#define MAGIC_KEY_LAYER8 8
//#define MAGIC_KEY_LAYER9 9
//#define MAGIC_KEY_BOOTLOADER PAUSE
//#define MAGIC_KEY_LOCK CAPS
//#define MAGIC_KEY_EEPROM E
//#define MAGIC_KEY_NKRO N
//#define MAGIC_KEY_SLEEP_LED Z
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
//#define NO_DEBUG
/* disable print */
//#define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION
/*
* MIDI options
*/
/* Prevent use of disabled MIDI features in the keymap */
//#define MIDI_ENABLE_STRICT 1
/* enable basic MIDI features:
- MIDI notes can be sent when in Music mode is on
*/
//#define MIDI_BASIC
/* enable advanced MIDI features:
- MIDI notes can be added to the keymap
- Octave shift and transpose
- Virtual sustain, portamento, and modulation wheel
- etc.
*/
//#define MIDI_ADVANCED
/* override number of MIDI tone keycodes (each octave adds 12 keycodes and allocates 12 bytes) */
//#define MIDI_TONE_KEYCODE_OCTAVES 1
/*
* HD44780 LCD Display Configuration
*/
/*
#define LCD_LINES 2 //< number of visible lines of the display
#define LCD_DISP_LENGTH 16 //< visibles characters per line of the display
#define LCD_IO_MODE 1 //< 0: memory mapped mode, 1: IO port mode
#if LCD_IO_MODE
#define LCD_PORT PORTB //< port for the LCD lines
#define LCD_DATA0_PORT LCD_PORT //< port for 4bit data bit 0
#define LCD_DATA1_PORT LCD_PORT //< port for 4bit data bit 1
#define LCD_DATA2_PORT LCD_PORT //< port for 4bit data bit 2
#define LCD_DATA3_PORT LCD_PORT //< port for 4bit data bit 3
#define LCD_DATA0_PIN 4 //< pin for 4bit data bit 0
#define LCD_DATA1_PIN 5 //< pin for 4bit data bit 1
#define LCD_DATA2_PIN 6 //< pin for 4bit data bit 2
#define LCD_DATA3_PIN 7 //< pin for 4bit data bit 3
#define LCD_RS_PORT LCD_PORT //< port for RS line
#define LCD_RS_PIN 3 //< pin for RS line
#define LCD_RW_PORT LCD_PORT //< port for RW line
#define LCD_RW_PIN 2 //< pin for RW line
#define LCD_E_PORT LCD_PORT //< port for Enable line
#define LCD_E_PIN 1 //< pin for Enable line
#endif
*/
/* Bootmagic Lite key configuration */
// #define BOOTMAGIC_LITE_ROW 0
// #define BOOTMAGIC_LITE_COLUMN 0

View File

View File

@ -0,0 +1,91 @@
/* Copyright 2018 Ryota Goto
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include QMK_KEYBOARD_H
// Defines the keycodes used by our macros in process_record_user
enum custom_keycodes {
MANUAL = SAFE_RANGE,
DBLZERO
};
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
[0] = LAYOUT( /* Base */
TO(1), KC_ESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_LBRC, KC_BSPC, \
TO(1), KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_RBRC, KC_BSLS, \
KC_NO, KC_CAPS, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, KC_ENT, \
KC_NO, KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_PSCR, KC_DEL, \
KC_LCTL, KC_LCTL, KC_LGUI, KC_LALT, MO(1), KC_SPC, KC_SPC, MO(2), KC_GRV, KC_MENU, KC_MINS, KC_EQL
),
[1] = LAYOUT( /* Fn, Arrowkeys, Media control, Backlight */
TO(2), _______, KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_VOLU, _______, \
TO(2), _______, _______, KC_PGUP, _______, _______, KC_F11, KC_F12, _______, KC_UP, _______, _______, KC_VOLD, BL_STEP, \
TO(0), _______, KC_HOME, KC_PGDN, KC_END, _______, _______, _______, KC_LEFT, KC_DOWN, KC_RGHT, _______, KC_MPLY, _______, \
TO(0), _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, KC_INS, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
),
[2] = LAYOUT( /* Mousekeys and Numpad */
KC_NO, _______, _______, _______, _______, _______, _______, KC_NLCK, KC_P7, KC_P8, KC_P9, KC_PSLS, _______, _______, \
KC_NO, _______, KC_BTN1, KC_MS_U, KC_BTN2, KC_WH_U, _______, _______, KC_P4, KC_P5, KC_P6, KC_PAST, _______, _______, \
TO(1), _______, KC_MS_L, KC_MS_D, KC_MS_R, KC_WH_D, _______, _______, KC_P1, KC_P2, KC_P3, KC_PMNS, _______, _______, \
TO(1), _______, KC_ACL0, KC_ACL1, KC_ACL2, KC_BTN3, _______, DBLZERO, KC_P0, KC_PDOT, KC_PENT, KC_PPLS, _______, MANUAL, \
_______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______, _______
)
};
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case MANUAL:
if (record->event.pressed)
{
// Keypress
SEND_STRING("https://kb.ai03.me/redir/orbit");
}
else
{
// Key release
}
break;
case DBLZERO:
if (record->event.pressed)
{
// Keypress
SEND_STRING("00");
}
else
{
// Key release
}
break;
}
return true;
}
void matrix_init_user(void) {
}
void matrix_scan_user(void) {
}
void led_set_user(uint8_t usb_led) {
}
uint32_t layer_state_set_user(uint32_t state) {
return state;
}

View File

@ -0,0 +1,3 @@
# The default keymap for Orbit
[KLE of layout](http://www.keyboard-layout-editor.com/#/gists/53ebf59524de12515cb7e2e6de94f0d6)

View File

@ -0,0 +1,328 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include "wait.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "config.h"
#include "split_flags.h"
#include "quantum.h"
#include "debounce.h"
#include "transport.h"
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#elif (MATRIX_COLS <= 16)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse16(matrix_get_row(row))
# define matrix_bitpop(i) bitpop16(matrix[i])
# define ROW_SHIFTER ((uint16_t)1)
#elif (MATRIX_COLS <= 32)
# define print_matrix_header() print("\nr/c 0123456789ABCDEF0123456789ABCDEF\n")
# define print_matrix_row(row) print_bin_reverse32(matrix_get_row(row))
# define matrix_bitpop(i) bitpop32(matrix[i])
# define ROW_SHIFTER ((uint32_t)1)
#endif
#define ERROR_DISCONNECT_COUNT 5
//#define ROWS_PER_HAND (MATRIX_ROWS / 2)
#ifdef DIRECT_PINS
static pin_t direct_pins[MATRIX_ROWS][MATRIX_COLS] = DIRECT_PINS;
#else
static pin_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static pin_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
#endif
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t raw_matrix[ROWS_PER_HAND];
// row offsets for each hand
uint8_t thisHand, thatHand;
// user-defined overridable functions
__attribute__((weak)) void matrix_init_kb(void) { matrix_init_user(); }
__attribute__((weak)) void matrix_scan_kb(void) { matrix_scan_user(); }
__attribute__((weak)) void matrix_init_user(void) {}
__attribute__((weak)) void matrix_scan_user(void) {}
__attribute__((weak)) void matrix_slave_scan_user(void) {}
// helper functions
inline uint8_t matrix_rows(void) { return MATRIX_ROWS; }
inline uint8_t matrix_cols(void) { return MATRIX_COLS; }
bool matrix_is_modified(void) {
if (debounce_active()) return false;
return true;
}
inline bool matrix_is_on(uint8_t row, uint8_t col) { return (matrix[row] & ((matrix_row_t)1 << col)); }
inline matrix_row_t matrix_get_row(uint8_t row) { return matrix[row]; }
void matrix_print(void) {
print_matrix_header();
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row);
print(": ");
print_matrix_row(row);
print("\n");
}
}
uint8_t matrix_key_count(void) {
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += matrix_bitpop(i);
}
return count;
}
// matrix code
#ifdef DIRECT_PINS
static void init_pins(void) {
for (int row = 0; row < MATRIX_ROWS; row++) {
for (int col = 0; col < MATRIX_COLS; col++) {
pin_t pin = direct_pins[row][col];
if (pin != NO_PIN) {
setPinInputHigh(pin);
}
}
}
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
matrix_row_t last_row_value = current_matrix[current_row];
current_matrix[current_row] = 0;
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
pin_t pin = direct_pins[current_row][col_index];
if (pin != NO_PIN) {
current_matrix[current_row] |= readPin(pin) ? 0 : (ROW_SHIFTER << col_index);
}
}
return (last_row_value != current_matrix[current_row]);
}
#elif (DIODE_DIRECTION == COL2ROW)
static void select_row(uint8_t row) {
setPinOutput(row_pins[row]);
writePinLow(row_pins[row]);
}
static void unselect_row(uint8_t row) { setPinInputHigh(row_pins[row]); }
static void unselect_rows(void) {
for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
setPinInputHigh(row_pins[x]);
}
}
static void init_pins(void) {
unselect_rows();
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
setPinInputHigh(col_pins[x]);
}
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row) {
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
// Clear data in matrix row
current_matrix[current_row] = 0;
// Select row and wait for row selecton to stabilize
select_row(current_row);
wait_us(30);
// For each col...
for (uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
// Populate the matrix row with the state of the col pin
current_matrix[current_row] |= readPin(col_pins[col_index]) ? 0 : (ROW_SHIFTER << col_index);
}
// Unselect row
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
}
#elif (DIODE_DIRECTION == ROW2COL)
static void select_col(uint8_t col) {
setPinOutput(col_pins[col]);
writePinLow(col_pins[col]);
}
static void unselect_col(uint8_t col) { setPinInputHigh(col_pins[col]); }
static void unselect_cols(void) {
for (uint8_t x = 0; x < MATRIX_COLS; x++) {
setPinInputHigh(col_pins[x]);
}
}
static void init_pins(void) {
unselect_cols();
for (uint8_t x = 0; x < ROWS_PER_HAND; x++) {
setPinInputHigh(row_pins[x]);
}
}
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col) {
bool matrix_changed = false;
// Select col and wait for col selecton to stabilize
select_col(current_col);
wait_us(30);
// For each row...
for (uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++) {
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[row_index];
// Check row pin state
if (readPin(row_pins[row_index])) {
// Pin HI, clear col bit
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
} else {
// Pin LO, set col bit
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
}
// Determine if the matrix changed state
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed)) {
matrix_changed = true;
}
}
// Unselect col
unselect_col(current_col);
return matrix_changed;
}
#endif
void matrix_init(void) {
debug_enable = true;
debug_matrix = true;
debug_mouse = true;
// Set pinout for right half if pinout for that half is defined
if (!isLeftHand) {
#ifdef MATRIX_ROW_PINS_RIGHT
const uint8_t row_pins_right[MATRIX_ROWS] = MATRIX_ROW_PINS_RIGHT;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
row_pins[i] = row_pins_right[i];
}
#endif
#ifdef MATRIX_COL_PINS_RIGHT
const uint8_t col_pins_right[MATRIX_COLS] = MATRIX_COL_PINS_RIGHT;
for (uint8_t i = 0; i < MATRIX_COLS; i++) {
col_pins[i] = col_pins_right[i];
}
#endif
}
thisHand = isLeftHand ? 0 : (ROWS_PER_HAND);
thatHand = ROWS_PER_HAND - thisHand;
// initialize key pins
init_pins();
// initialize matrix state: all keys off
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
}
debounce_init(ROWS_PER_HAND);
matrix_init_quantum();
}
uint8_t _matrix_scan(void) {
bool changed = false;
#if defined(DIRECT_PINS) || (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
changed |= read_cols_on_row(raw_matrix, current_row);
}
#elif (DIODE_DIRECTION == ROW2COL)
// Set col, read rows
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
changed |= read_rows_on_col(raw_matrix, current_col);
}
#endif
debounce(raw_matrix, matrix + thisHand, ROWS_PER_HAND, changed);
return 1;
}
uint8_t matrix_scan(void) {
uint8_t ret = _matrix_scan();
if (is_keyboard_master()) {
static uint8_t error_count;
if (!transport_master(matrix + thatHand)) {
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[thatHand + i] = 0;
}
}
} else {
error_count = 0;
}
matrix_scan_quantum();
} else {
transport_slave(matrix + thisHand);
matrix_slave_scan_user();
}
return ret;
}

View File

@ -0,0 +1,3 @@
#pragma once
#include <common/matrix.h>

View File

@ -0,0 +1,228 @@
/* Copyright 2018 Ryota Goto
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "orbit.h"
#include "split_util.h"
#include "transport.h"
// Call led_toggle to set LEDs easily
// LED IDs:
//
// (LEFT) 0 1 2 | 3 4 5 (RIGHT)
void led_toggle(int id, bool on) {
if (isLeftHand) {
switch(id) {
case 0:
// Left hand C6
if (on)
//PORTC |= (1<<6);
writePinHigh(C6);
else
//PORTC &= ~(1<<6);
writePinLow(C6);
break;
case 1:
// Left hand B6
if (on)
//PORTB |= (1<<6);
writePinHigh(B6);
else
//PORTB &= ~(1<<6);
writePinLow(B6);
break;
case 2:
// Left hand B5
if (on)
//PORTB |= (1<<5);
writePinHigh(B5);
else
//PORTB &= ~(1<<5);
writePinLow(B5);
break;
default:
break;
}
} else {
switch(id) {
case 3:
// Right hand F6
if (on)
//PORTF |= (1<<6);
writePinHigh(F6);
else
//PORTF &= ~(1<<6);
writePinLow(F6);
break;
case 4:
// Right hand F7
if (on)
//PORTF |= (1<<7);
writePinHigh(F7);
else
//PORTF &= ~(1<<7);
writePinLow(F7);
break;
case 5:
// Right hand C7
if (on)
//PORTC |= (1<<7);
writePinHigh(C7);
else
//PORTC &= ~(1<<7);
writePinLow(C7);
break;
default:
break;
}
}
}
// Set all LEDs at once using an array of 6 booleans
// LED IDs:
//
// (LEFT) 0 1 2 | 3 4 5 (RIGHT)
//
// Ex. set_all_leds({ false, false, false, true, true, true }) would turn off left hand, turn on right hand
void set_all_leds(bool leds[6]) {
for (int i = 0; i < 6; i++) {
led_toggle(i, leds[i]);
}
}
void set_layer_indicators(uint8_t layer) {
switch (layer)
{
case 0:
led_toggle(0, true);
led_toggle(1, false);
led_toggle(2, false);
break;
case 1:
led_toggle(0, true);
led_toggle(1, true);
led_toggle(2, false);
break;
case 2:
led_toggle(0, true);
led_toggle(1, true);
led_toggle(2, true);
break;
case 3:
led_toggle(0, false);
led_toggle(1, true);
led_toggle(2, true);
break;
case 4:
led_toggle(0, false);
led_toggle(1, false);
led_toggle(2, true);
break;
default:
led_toggle(0, true);
led_toggle(1, false);
led_toggle(2, true);
break;
}
}
void matrix_init_kb(void) {
// put your keyboard start-up code here
// runs once when the firmware starts up
// Initialize indicator LEDs to output
if (isLeftHand)
{
setPinOutput(C6);
setPinOutput(B6);
setPinOutput(B5);
//DDRC |= (1<<6);
//DDRB |= (1<<6);
//DDRB |= (1<<5);
}
else
{
setPinOutput(F6);
setPinOutput(F7);
setPinOutput(C7);
//DDRF |= (1<<6);
//DDRF |= (1<<7);
//DDRC |= (1<<7);
}
set_layer_indicators(0);
matrix_init_user();
}
void matrix_scan_kb(void) {
// put your looping keyboard code here
// runs every cycle (a lot)
matrix_scan_user();
}
bool process_record_kb(uint16_t keycode, keyrecord_t *record) {
// put your per-action keyboard code here
// runs for every action, just before processing by the firmware
return process_record_user(keycode, record);
}
void led_set_kb(uint8_t usb_led) {
// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
if (is_keyboard_master()) {
serial_m2s_buffer.nlock_led = IS_LED_ON(usb_led, USB_LED_NUM_LOCK);
serial_m2s_buffer.clock_led = IS_LED_ON(usb_led, USB_LED_CAPS_LOCK);
serial_m2s_buffer.slock_led = IS_LED_ON(usb_led, USB_LED_SCROLL_LOCK);
led_toggle(3, IS_LED_ON(usb_led, USB_LED_NUM_LOCK));
led_toggle(4, IS_LED_ON(usb_led, USB_LED_CAPS_LOCK));
led_toggle(5, IS_LED_ON(usb_led, USB_LED_SCROLL_LOCK));
}
led_set_user(usb_led);
}
uint32_t layer_state_set_kb(uint32_t state) {
if (is_keyboard_master())
{
current_layer = biton32(state);
serial_m2s_buffer.current_layer = biton32(state);
// If left half, do the LED toggle thing
if (isLeftHand)
{
set_layer_indicators(biton32(state));
}
}
// NOTE: Do not set slave LEDs here.
// This is not called on slave
return layer_state_set_user(state);
}

View File

@ -0,0 +1,65 @@
/* Copyright 2018 Ryota Goto
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef ORBIT_H
#define ORBIT_H
#include "quantum.h"
/* This a shortcut to help you visually see your layout.
*
* The first section contains all of the arguments representing the physical
* layout of the board and position of the keys.
*
* The second converts the arguments into a two-dimensional array which
* represents the switch matrix.
*/
#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
#include <avr/io.h>
#include <avr/interrupt.h>
#endif
#endif
#define LAYOUT( \
L00, L01, L02, L03, L04, L05, L06, R00, R01, R02, R03, R04, R05, R06, \
L10, L11, L12, L13, L14, L15, L16, R10, R11, R12, R13, R14, R15, R16, \
L20, L21, L22, L23, L24, L25, L26, R20, R21, R22, R23, R24, R25, R26, \
L30, L31, L32, L33, L34, L35, L36, R30, R31, R32, R33, R34, R35, R36, \
L41, L42, L43, L44, L45, L46, R40, R41, R42, R43, R44, R45 \
) \
{ \
{ L00, L01, L02, L03, L04, L05, L06 }, \
{ L10, L11, L12, L13, L14, L15, L16 }, \
{ L20, L21, L22, L23, L24, L25, L26 }, \
{ L30, L31, L32, L33, L34, L35, L36 }, \
{ KC_NO, L41, L42, L43, L44, L45, L46 }, \
{ R00, R01, R02, R03, R04, R05, R06 }, \
{ R10, R11, R12, R13, R14, R15, R16 }, \
{ R20, R21, R22, R23, R24, R25, R26 }, \
{ R30, R31, R32, R33, R34, R35, R36 }, \
{ R40, R41, R42, R43, R44, R45, KC_NO } \
}
uint8_t current_layer;
extern void led_toggle(int id, bool on);
void set_all_leds(bool leds[6]);
extern void set_layer_indicators(uint8_t layer);
#endif

View File

@ -0,0 +1,15 @@
# Orbit
![Orbit](https://raw.githubusercontent.com/ai03-2725/Orbit/master/Images/PCB-R2.0.jpg)
A split ergonomic keyboard project.
Keyboard Maintainer: [ai03](https://github.com/ai03-2725)
Hardware Supported: The [Orbit PCB](https://github.com/ai03-2725/Orbit)
Hardware Availability: [This repository](https://github.com/ai03-2725/Orbit) has PCB files. Case group buy orders are currently closed.
Make example for this keyboard (after setting up your build environment):
make ai03/orbit:default
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

View File

@ -0,0 +1,92 @@
SRC += split_util.c \
split_flags.c \
serial.c \
transport.c \
matrix.c
# MCU name
#MCU = at90usb1286
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader selection
# Teensy halfkay
# Pro Micro caterina
# Atmel DFU atmel-dfu
# LUFA DFU lufa-dfu
# QMK DFU qmk-dfu
# atmega32a bootloadHID
BOOTLOADER = atmel-dfu
# If you don't know the bootloader type, then you can specify the
# Boot Section Size in *bytes* by uncommenting out the OPT_DEFS line
# Teensy halfKay 512
# Teensy++ halfKay 1024
# Atmel DFU loader 4096
# LUFA bootloader 4096
# USBaspLoader 2048
# OPT_DEFS += -DBOOTLOADER_SIZE=4096
# Build Options
# change yes to no to disable
#
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = yes # Mouse keys(+4700)
EXTRAKEY_ENABLE = yes # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
# if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
NKRO_ENABLE = yes # USB Nkey Rollover
BACKLIGHT_ENABLE = yes # Enable keyboard backlight functionality on B7 by default
RGBLIGHT_ENABLE = no # Enable keyboard RGB underglow
MIDI_ENABLE = no # MIDI support (+2400 to 4200, depending on config)
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
AUDIO_ENABLE = no # Audio output on port C6
FAUXCLICKY_ENABLE = no # Use buzzer to emulate clicky switches
HD44780_ENABLE = no # Enable support for HD44780 based LCDs (+400)
USE_I2C = no # I2C for split communication
CUSTOM_MATRIX = yes # For providing custom matrix.c (in this case, override regular matrix.c with split matrix.c)
# SPLIT_KEYBOARD = yes # Split keyboard flag disabled as manual edits had to be done to the split common files

View File

@ -0,0 +1,546 @@
/*
* WARNING: be careful changing this code, it is very timing dependent
*
* 2018-10-28 checked
* avr-gcc 4.9.2
* avr-gcc 5.4.0
* avr-gcc 7.3.0
*/
#ifndef F_CPU
#define F_CPU 16000000
#endif
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stddef.h>
#include <stdbool.h>
#include "serial.h"
//#include <pro_micro.h>
#ifdef SOFT_SERIAL_PIN
#ifdef __AVR_ATmega32U4__
// if using ATmega32U4 I2C, can not use PD0 and PD1 in soft serial.
#ifdef USE_AVR_I2C
#if SOFT_SERIAL_PIN == D0 || SOFT_SERIAL_PIN == D1
#error Using ATmega32U4 I2C, so can not use PD0, PD1
#endif
#endif
#if SOFT_SERIAL_PIN >= D0 && SOFT_SERIAL_PIN <= D3
#define SERIAL_PIN_DDR DDRD
#define SERIAL_PIN_PORT PORTD
#define SERIAL_PIN_INPUT PIND
#if SOFT_SERIAL_PIN == D0
#define SERIAL_PIN_MASK _BV(PD0)
#define EIMSK_BIT _BV(INT0)
#define EICRx_BIT (~(_BV(ISC00) | _BV(ISC01)))
#define SERIAL_PIN_INTERRUPT INT0_vect
#elif SOFT_SERIAL_PIN == D1
#define SERIAL_PIN_MASK _BV(PD1)
#define EIMSK_BIT _BV(INT1)
#define EICRx_BIT (~(_BV(ISC10) | _BV(ISC11)))
#define SERIAL_PIN_INTERRUPT INT1_vect
#elif SOFT_SERIAL_PIN == D2
#define SERIAL_PIN_MASK _BV(PD2)
#define EIMSK_BIT _BV(INT2)
#define EICRx_BIT (~(_BV(ISC20) | _BV(ISC21)))
#define SERIAL_PIN_INTERRUPT INT2_vect
#elif SOFT_SERIAL_PIN == D3
#define SERIAL_PIN_MASK _BV(PD3)
#define EIMSK_BIT _BV(INT3)
#define EICRx_BIT (~(_BV(ISC30) | _BV(ISC31)))
#define SERIAL_PIN_INTERRUPT INT3_vect
#endif
#elif SOFT_SERIAL_PIN == E6
#define SERIAL_PIN_DDR DDRE
#define SERIAL_PIN_PORT PORTE
#define SERIAL_PIN_INPUT PINE
#define SERIAL_PIN_MASK _BV(PE6)
#define EIMSK_BIT _BV(INT6)
#define EICRx_BIT (~(_BV(ISC60) | _BV(ISC61)))
#define SERIAL_PIN_INTERRUPT INT6_vect
#else
#error invalid SOFT_SERIAL_PIN value
#endif
#else
#error serial.c now support ATmega32U4 only
#endif
#define ALWAYS_INLINE __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#define _delay_sub_us(x) __builtin_avr_delay_cycles(x)
// parity check
#define ODD_PARITY 1
#define EVEN_PARITY 0
#define PARITY EVEN_PARITY
#ifdef SERIAL_DELAY
// custom setup in config.h
// #define TID_SEND_ADJUST 2
// #define SERIAL_DELAY 6 // micro sec
// #define READ_WRITE_START_ADJUST 30 // cycles
// #define READ_WRITE_WIDTH_ADJUST 8 // cycles
#else
// ============ Standard setups ============
#ifndef SELECT_SOFT_SERIAL_SPEED
#define SELECT_SOFT_SERIAL_SPEED 1
// 0: about 189kbps (Experimental only)
// 1: about 137kbps (default)
// 2: about 75kbps
// 3: about 39kbps
// 4: about 26kbps
// 5: about 20kbps
#endif
#if __GNUC__ < 6
#define TID_SEND_ADJUST 14
#else
#define TID_SEND_ADJUST 2
#endif
#if SELECT_SOFT_SERIAL_SPEED == 0
// Very High speed
#define SERIAL_DELAY 4 // micro sec
#if __GNUC__ < 6
#define READ_WRITE_START_ADJUST 33 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_START_ADJUST 34 // cycles
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 1
// High speed
#define SERIAL_DELAY 6 // micro sec
#if __GNUC__ < 6
#define READ_WRITE_START_ADJUST 30 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_START_ADJUST 33 // cycles
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 2
// Middle speed
#define SERIAL_DELAY 12 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 3
// Low speed
#define SERIAL_DELAY 24 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 4
// Very Low speed
#define SERIAL_DELAY 36 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#elif SELECT_SOFT_SERIAL_SPEED == 5
// Ultra Low speed
#define SERIAL_DELAY 48 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#if __GNUC__ < 6
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#define READ_WRITE_WIDTH_ADJUST 7 // cycles
#endif
#else
#error invalid SELECT_SOFT_SERIAL_SPEED value
#endif /* SELECT_SOFT_SERIAL_SPEED */
#endif /* SERIAL_DELAY */
#define SERIAL_DELAY_HALF1 (SERIAL_DELAY/2)
#define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY/2)
#define SLAVE_INT_WIDTH_US 1
#ifndef SERIAL_USE_MULTI_TRANSACTION
#define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY
#else
#define SLAVE_INT_ACK_WIDTH_UNIT 2
#define SLAVE_INT_ACK_WIDTH 4
#endif
static SSTD_t *Transaction_table = NULL;
static uint8_t Transaction_table_size = 0;
inline static void serial_delay(void) ALWAYS_INLINE;
inline static
void serial_delay(void) {
_delay_us(SERIAL_DELAY);
}
inline static void serial_delay_half1(void) ALWAYS_INLINE;
inline static
void serial_delay_half1(void) {
_delay_us(SERIAL_DELAY_HALF1);
}
inline static void serial_delay_half2(void) ALWAYS_INLINE;
inline static
void serial_delay_half2(void) {
_delay_us(SERIAL_DELAY_HALF2);
}
inline static void serial_output(void) ALWAYS_INLINE;
inline static
void serial_output(void) {
SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}
// make the serial pin an input with pull-up resistor
inline static void serial_input_with_pullup(void) ALWAYS_INLINE;
inline static
void serial_input_with_pullup(void) {
SERIAL_PIN_DDR &= ~SERIAL_PIN_MASK;
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
inline static uint8_t serial_read_pin(void) ALWAYS_INLINE;
inline static
uint8_t serial_read_pin(void) {
return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}
inline static void serial_low(void) ALWAYS_INLINE;
inline static
void serial_low(void) {
SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}
inline static void serial_high(void) ALWAYS_INLINE;
inline static
void serial_high(void) {
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size)
{
Transaction_table = sstd_table;
Transaction_table_size = (uint8_t)sstd_table_size;
serial_output();
serial_high();
}
void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size)
{
Transaction_table = sstd_table;
Transaction_table_size = (uint8_t)sstd_table_size;
serial_input_with_pullup();
// Enable INT0-INT3,INT6
EIMSK |= EIMSK_BIT;
#if SERIAL_PIN_MASK == _BV(PE6)
// Trigger on falling edge of INT6
EICRB &= EICRx_BIT;
#else
// Trigger on falling edge of INT0-INT3
EICRA &= EICRx_BIT;
#endif
}
// Used by the sender to synchronize timing with the reciver.
static void sync_recv(void) NO_INLINE;
static
void sync_recv(void) {
for (uint8_t i = 0; i < SERIAL_DELAY*5 && serial_read_pin(); i++ ) {
}
// This shouldn't hang if the target disconnects because the
// serial line will float to high if the target does disconnect.
while (!serial_read_pin());
}
// Used by the reciver to send a synchronization signal to the sender.
static void sync_send(void) NO_INLINE;
static
void sync_send(void) {
serial_low();
serial_delay();
serial_high();
}
// Reads a byte from the serial line
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE;
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) {
uint8_t byte, i, p, pb;
_delay_sub_us(READ_WRITE_START_ADJUST);
for( i = 0, byte = 0, p = PARITY; i < bit; i++ ) {
serial_delay_half1(); // read the middle of pulses
if( serial_read_pin() ) {
byte = (byte << 1) | 1; p ^= 1;
} else {
byte = (byte << 1) | 0; p ^= 0;
}
_delay_sub_us(READ_WRITE_WIDTH_ADJUST);
serial_delay_half2();
}
/* recive parity bit */
serial_delay_half1(); // read the middle of pulses
pb = serial_read_pin();
_delay_sub_us(READ_WRITE_WIDTH_ADJUST);
serial_delay_half2();
*pterrcount += (p != pb)? 1 : 0;
return byte;
}
// Sends a byte with MSB ordering
void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE;
void serial_write_chunk(uint8_t data, uint8_t bit) {
uint8_t b, p;
for( p = PARITY, b = 1<<(bit-1); b ; b >>= 1) {
if(data & b) {
serial_high(); p ^= 1;
} else {
serial_low(); p ^= 0;
}
serial_delay();
}
/* send parity bit */
if(p & 1) { serial_high(); }
else { serial_low(); }
serial_delay();
serial_low(); // sync_send() / senc_recv() need raise edge
}
static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
void serial_send_packet(uint8_t *buffer, uint8_t size) {
for (uint8_t i = 0; i < size; ++i) {
uint8_t data;
data = buffer[i];
sync_send();
serial_write_chunk(data,8);
}
}
static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) {
uint8_t pecount = 0;
for (uint8_t i = 0; i < size; ++i) {
uint8_t data;
sync_recv();
data = serial_read_chunk(&pecount, 8);
buffer[i] = data;
}
return pecount == 0;
}
inline static
void change_sender2reciver(void) {
sync_send(); //0
serial_delay_half1(); //1
serial_low(); //2
serial_input_with_pullup(); //2
serial_delay_half1(); //3
}
inline static
void change_reciver2sender(void) {
sync_recv(); //0
serial_delay(); //1
serial_low(); //3
serial_output(); //3
serial_delay_half1(); //4
}
static inline uint8_t nibble_bits_count(uint8_t bits)
{
bits = (bits & 0x5) + (bits >> 1 & 0x5);
bits = (bits & 0x3) + (bits >> 2 & 0x3);
return bits;
}
// interrupt handle to be used by the target device
ISR(SERIAL_PIN_INTERRUPT) {
#ifndef SERIAL_USE_MULTI_TRANSACTION
serial_low();
serial_output();
SSTD_t *trans = Transaction_table;
#else
// recive transaction table index
uint8_t tid, bits;
uint8_t pecount = 0;
sync_recv();
bits = serial_read_chunk(&pecount,7);
tid = bits>>3;
bits = (bits&7) != nibble_bits_count(tid);
if( bits || pecount> 0 || tid > Transaction_table_size ) {
return;
}
serial_delay_half1();
serial_high(); // response step1 low->high
serial_output();
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT*SLAVE_INT_ACK_WIDTH);
SSTD_t *trans = &Transaction_table[tid];
serial_low(); // response step2 ack high->low
#endif
// target send phase
if( trans->target2initiator_buffer_size > 0 )
serial_send_packet((uint8_t *)trans->target2initiator_buffer,
trans->target2initiator_buffer_size);
// target switch to input
change_sender2reciver();
// target recive phase
if( trans->initiator2target_buffer_size > 0 ) {
if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer,
trans->initiator2target_buffer_size) ) {
*trans->status = TRANSACTION_ACCEPTED;
} else {
*trans->status = TRANSACTION_DATA_ERROR;
}
} else {
*trans->status = TRANSACTION_ACCEPTED;
}
sync_recv(); //weit initiator output to high
}
/////////
// start transaction by initiator
//
// int soft_serial_transaction(int sstd_index)
//
// Returns:
// TRANSACTION_END
// TRANSACTION_NO_RESPONSE
// TRANSACTION_DATA_ERROR
// this code is very time dependent, so we need to disable interrupts
#ifndef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_transaction(void) {
SSTD_t *trans = Transaction_table;
#else
int soft_serial_transaction(int sstd_index) {
if( sstd_index > Transaction_table_size )
return TRANSACTION_TYPE_ERROR;
SSTD_t *trans = &Transaction_table[sstd_index];
#endif
cli();
// signal to the target that we want to start a transaction
serial_output();
serial_low();
_delay_us(SLAVE_INT_WIDTH_US);
#ifndef SERIAL_USE_MULTI_TRANSACTION
// wait for the target response
serial_input_with_pullup();
_delay_us(SLAVE_INT_RESPONSE_TIME);
// check if the target is present
if (serial_read_pin()) {
// target failed to pull the line low, assume not present
serial_output();
serial_high();
*trans->status = TRANSACTION_NO_RESPONSE;
sei();
return TRANSACTION_NO_RESPONSE;
}
#else
// send transaction table index
int tid = (sstd_index<<3) | (7 & nibble_bits_count(sstd_index));
sync_send();
_delay_sub_us(TID_SEND_ADJUST);
serial_write_chunk(tid, 7);
serial_delay_half1();
// wait for the target response (step1 low->high)
serial_input_with_pullup();
while( !serial_read_pin() ) {
_delay_sub_us(2);
}
// check if the target is present (step2 high->low)
for( int i = 0; serial_read_pin(); i++ ) {
if (i > SLAVE_INT_ACK_WIDTH + 1) {
// slave failed to pull the line low, assume not present
serial_output();
serial_high();
*trans->status = TRANSACTION_NO_RESPONSE;
sei();
return TRANSACTION_NO_RESPONSE;
}
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT);
}
#endif
// initiator recive phase
// if the target is present syncronize with it
if( trans->target2initiator_buffer_size > 0 ) {
if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer,
trans->target2initiator_buffer_size) ) {
serial_output();
serial_high();
*trans->status = TRANSACTION_DATA_ERROR;
sei();
return TRANSACTION_DATA_ERROR;
}
}
// initiator switch to output
change_reciver2sender();
// initiator send phase
if( trans->initiator2target_buffer_size > 0 ) {
serial_send_packet((uint8_t *)trans->initiator2target_buffer,
trans->initiator2target_buffer_size);
}
// always, release the line when not in use
sync_send();
*trans->status = TRANSACTION_END;
sei();
return TRANSACTION_END;
}
#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index) {
SSTD_t *trans = &Transaction_table[sstd_index];
cli();
int retval = *trans->status;
*trans->status = 0;;
sei();
return retval;
}
#endif
#endif
// Helix serial.c history
// 2018-1-29 fork from let's split and add PD2, modify sync_recv() (#2308, bceffdefc)
// 2018-6-28 bug fix master to slave comm and speed up (#3255, 1038bbef4)
// (adjusted with avr-gcc 4.9.2)
// 2018-7-13 remove USE_SERIAL_PD2 macro (#3374, f30d6dd78)
// (adjusted with avr-gcc 4.9.2)
// 2018-8-11 add support multi-type transaction (#3608, feb5e4aae)
// (adjusted with avr-gcc 4.9.2)
// 2018-10-21 fix serial and RGB animation conflict (#4191, 4665e4fff)
// (adjusted with avr-gcc 7.3.0)
// 2018-10-28 re-adjust compiler depend value of delay (#4269, 8517f8a66)
// (adjusted with avr-gcc 5.4.0, 7.3.0)
// 2018-12-17 copy to TOP/quantum/split_common/ and remove backward compatibility code (#4669)

View File

@ -0,0 +1,62 @@
#pragma once
#include <stdbool.h>
// /////////////////////////////////////////////////////////////////
// Need Soft Serial defines in config.h
// /////////////////////////////////////////////////////////////////
// ex.
// #define SOFT_SERIAL_PIN ?? // ?? = D0,D1,D2,D3,E6
// OPTIONAL: #define SELECT_SOFT_SERIAL_SPEED ? // ? = 1,2,3,4,5
// // 1: about 137kbps (default)
// // 2: about 75kbps
// // 3: about 39kbps
// // 4: about 26kbps
// // 5: about 20kbps
//
// //// USE simple API (using signle-type transaction function)
// /* nothing */
// //// USE flexible API (using multi-type transaction function)
// #define SERIAL_USE_MULTI_TRANSACTION
//
// /////////////////////////////////////////////////////////////////
// Soft Serial Transaction Descriptor
typedef struct _SSTD_t {
uint8_t *status;
uint8_t initiator2target_buffer_size;
uint8_t *initiator2target_buffer;
uint8_t target2initiator_buffer_size;
uint8_t *target2initiator_buffer;
} SSTD_t;
#define TID_LIMIT( table ) (sizeof(table) / sizeof(SSTD_t))
// initiator is transaction start side
void soft_serial_initiator_init(SSTD_t *sstd_table, int sstd_table_size);
// target is interrupt accept side
void soft_serial_target_init(SSTD_t *sstd_table, int sstd_table_size);
// initiator resullt
#define TRANSACTION_END 0
#define TRANSACTION_NO_RESPONSE 0x1
#define TRANSACTION_DATA_ERROR 0x2
#define TRANSACTION_TYPE_ERROR 0x4
#ifndef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_transaction(void);
#else
int soft_serial_transaction(int sstd_index);
#endif
// target status
// *SSTD_t.status has
// initiator:
// TRANSACTION_END
// or TRANSACTION_NO_RESPONSE
// or TRANSACTION_DATA_ERROR
// target:
// TRANSACTION_DATA_ERROR
// or TRANSACTION_ACCEPTED
#define TRANSACTION_ACCEPTED 0x8
#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index);
#endif

View File

@ -0,0 +1,5 @@
#include "split_flags.h"
volatile bool RGB_DIRTY = false;
volatile bool BACKLIT_DIRTY = false;

View File

@ -0,0 +1,15 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
/**
* Global Flags
**/
//RGB Stuff
extern volatile bool RGB_DIRTY;
//Backlight Stuff
extern volatile bool BACKLIT_DIRTY;

View File

@ -0,0 +1,87 @@
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#include "config.h"
#include "timer.h"
#include "split_flags.h"
#include "transport.h"
#include "quantum.h"
#ifdef EE_HANDS
# include "tmk_core/common/eeprom.h"
# include "eeconfig.h"
#endif
volatile bool isLeftHand = true;
__attribute__((weak))
bool is_keyboard_left(void) {
#ifdef SPLIT_HAND_PIN
// Test pin SPLIT_HAND_PIN for High/Low, if low it's right hand
setPinInput(SPLIT_HAND_PIN);
return readPin(SPLIT_HAND_PIN);
#else
#ifdef EE_HANDS
return eeprom_read_byte(EECONFIG_HANDEDNESS);
#else
#ifdef MASTER_RIGHT
return !is_keyboard_master();
#else
return is_keyboard_master();
#endif
#endif
#endif
}
bool is_keyboard_master(void)
{
#ifdef __AVR__
static enum { UNKNOWN, MASTER, SLAVE } usbstate = UNKNOWN;
// only check once, as this is called often
if (usbstate == UNKNOWN)
{
USBCON |= (1 << OTGPADE); // enables VBUS pad
wait_us(5);
usbstate = (USBSTA & (1 << VBUS)) ? MASTER : SLAVE; // checks state of VBUS
}
return (usbstate == MASTER);
#else
return true;
#endif
}
static void keyboard_master_setup(void) {
#if defined(USE_I2C) || defined(EH)
#ifdef SSD1306OLED
matrix_master_OLED_init ();
#endif
#endif
transport_master_init();
// For master the Backlight info needs to be sent on startup
// Otherwise the salve won't start with the proper info until an update
BACKLIT_DIRTY = true;
}
static void keyboard_slave_setup(void)
{
transport_slave_init();
}
// this code runs before the usb and keyboard is initialized
void matrix_setup(void)
{
isLeftHand = is_keyboard_left();
if (is_keyboard_master())
{
keyboard_master_setup();
}
else
{
keyboard_slave_setup();
}
}

View File

@ -0,0 +1,10 @@
#pragma once
#include <stdbool.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
extern volatile bool isLeftHand;
void matrix_master_OLED_init (void);

View File

@ -0,0 +1,238 @@
#include "transport.h"
#include "config.h"
#include "matrix.h"
#include "quantum.h"
#include "orbit.h"
#define ROWS_PER_HAND (MATRIX_ROWS/2)
#ifdef RGBLIGHT_ENABLE
# include "rgblight.h"
#endif
#ifdef BACKLIGHT_ENABLE
# include "backlight.h"
extern backlight_config_t backlight_config;
#endif
#if defined(USE_I2C) || defined(EH)
#include "i2c.h"
#ifndef SLAVE_I2C_ADDRESS
# define SLAVE_I2C_ADDRESS 0x32
#endif
#if (MATRIX_COLS > 8)
# error "Currently only supports 8 COLS"
#endif
// Get rows from other half over i2c
bool transport_master(matrix_row_t matrix[]) {
int err = 0;
// write backlight info
#ifdef BACKLIGHT_ENABLE
if (BACKLIT_DIRTY) {
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) { goto i2c_error; }
// Backlight location
err = i2c_master_write(I2C_BACKLIT_START);
if (err) { goto i2c_error; }
// Write backlight
i2c_master_write(get_backlight_level());
BACKLIT_DIRTY = false;
}
#endif
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) { goto i2c_error; }
// start of matrix stored at I2C_KEYMAP_START
err = i2c_master_write(I2C_KEYMAP_START);
if (err) { goto i2c_error; }
// Start read
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
if (err) { goto i2c_error; }
if (!err) {
int i;
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
matrix[i] = i2c_master_read(I2C_ACK);
}
matrix[i] = i2c_master_read(I2C_NACK);
i2c_master_stop();
} else {
i2c_error: // the cable is disconnceted, or something else went wrong
i2c_reset_state();
return false;
}
#ifdef RGBLIGHT_ENABLE
if (RGB_DIRTY) {
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) { goto i2c_error; }
// RGB Location
err = i2c_master_write(I2C_RGB_START);
if (err) { goto i2c_error; }
uint32_t dword = eeconfig_read_rgblight();
// Write RGB
err = i2c_master_write_data(&dword, 4);
if (err) { goto i2c_error; }
RGB_DIRTY = false;
i2c_master_stop();
}
#endif
return true;
}
void transport_slave(matrix_row_t matrix[]) {
for (int i = 0; i < ROWS_PER_HAND; ++i)
{
i2c_slave_buffer[I2C_KEYMAP_START + i] = matrix[i];
}
// Read Backlight Info
#ifdef BACKLIGHT_ENABLE
if (BACKLIT_DIRTY)
{
backlight_set(i2c_slave_buffer[I2C_BACKLIT_START]);
BACKLIT_DIRTY = false;
}
#endif
#ifdef RGBLIGHT_ENABLE
if (RGB_DIRTY)
{
// Disable interupts (RGB data is big)
cli();
// Create new DWORD for RGB data
uint32_t dword;
// Fill the new DWORD with the data that was sent over
uint8_t * dword_dat = (uint8_t *)(&dword);
for (int i = 0; i < 4; i++)
{
dword_dat[i] = i2c_slave_buffer[I2C_RGB_START + i];
}
// Update the RGB now with the new data and set RGB_DIRTY to false
rgblight_update_dword(dword);
RGB_DIRTY = false;
// Re-enable interupts now that RGB is set
sei();
}
#endif
}
void transport_master_init(void) {
i2c_master_init();
}
void transport_slave_init(void) {
i2c_slave_init(SLAVE_I2C_ADDRESS);
}
#else // USE_SERIAL
#include "serial.h"
volatile Serial_s2m_buffer_t serial_s2m_buffer = {};
volatile Serial_m2s_buffer_t serial_m2s_buffer = {};
uint8_t volatile status0 = 0;
SSTD_t transactions[] = {
{ (uint8_t *)&status0,
sizeof(serial_m2s_buffer), (uint8_t *)&serial_m2s_buffer,
sizeof(serial_s2m_buffer), (uint8_t *)&serial_s2m_buffer
}
};
uint8_t slave_layer_cache;
uint8_t slave_nlock_cache;
uint8_t slave_clock_cache;
uint8_t slave_slock_cache;
void transport_master_init(void)
{ soft_serial_initiator_init(transactions, TID_LIMIT(transactions)); }
void transport_slave_init(void)
{
soft_serial_target_init(transactions, TID_LIMIT(transactions));
slave_layer_cache = 255;
slave_nlock_cache = 255;
slave_clock_cache = 255;
slave_slock_cache = 255;
}
bool transport_master(matrix_row_t matrix[]) {
if (soft_serial_transaction()) {
return false;
}
// TODO: if MATRIX_COLS > 8 change to unpack()
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[i] = serial_s2m_buffer.smatrix[i];
}
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
// Code to send RGB over serial goes here (not implemented yet)
#endif
#ifdef BACKLIGHT_ENABLE
// Write backlight level for slave to read
serial_m2s_buffer.backlight_level = backlight_config.enable ? backlight_config.level : 0;
#endif
return true;
}
void transport_slave(matrix_row_t matrix[]) {
// TODO: if MATRIX_COLS > 8 change to pack()
for (int i = 0; i < ROWS_PER_HAND; ++i)
{
serial_s2m_buffer.smatrix[i] = matrix[i];
}
#ifdef BACKLIGHT_ENABLE
backlight_set(serial_m2s_buffer.backlight_level);
#endif
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
// Add serial implementation for RGB here
#endif
if (slave_layer_cache != serial_m2s_buffer.current_layer) {
slave_layer_cache = serial_m2s_buffer.current_layer;
set_layer_indicators(slave_layer_cache);
}
if (slave_nlock_cache != serial_m2s_buffer.nlock_led) {
slave_nlock_cache = serial_m2s_buffer.nlock_led;
led_toggle(3, slave_nlock_cache);
}
if (slave_clock_cache != serial_m2s_buffer.clock_led) {
slave_clock_cache = serial_m2s_buffer.clock_led;
led_toggle(4, slave_clock_cache);
}
if (slave_slock_cache != serial_m2s_buffer.slock_led) {
slave_slock_cache = serial_m2s_buffer.slock_led;
led_toggle(5, slave_slock_cache);
}
}
#endif

View File

@ -0,0 +1,42 @@
#pragma once
#include <common/matrix.h>
#define ROWS_PER_HAND (MATRIX_ROWS/2)
typedef struct _Serial_s2m_buffer_t {
// TODO: if MATRIX_COLS > 8 change to uint8_t packed_matrix[] for pack/unpack
matrix_row_t smatrix[ROWS_PER_HAND];
} Serial_s2m_buffer_t;
typedef struct _Serial_m2s_buffer_t {
#ifdef BACKLIGHT_ENABLE
uint8_t backlight_level;
#endif
#if defined(RGBLIGHT_ENABLE) && defined(RGBLIGHT_SPLIT)
rgblight_config_t rgblight_config; //not yet use
//
// When MCUs on both sides drive their respective RGB LED chains,
// it is necessary to synchronize, so it is necessary to communicate RGB information.
// In that case, define the RGBLIGHT_SPLIT macro.
//
// Otherwise, if the master side MCU drives both sides RGB LED chains,
// there is no need to communicate.
#endif
uint8_t current_layer;
uint8_t nlock_led;
uint8_t clock_led;
uint8_t slock_led;
} Serial_m2s_buffer_t;
extern volatile Serial_s2m_buffer_t serial_s2m_buffer;
extern volatile Serial_m2s_buffer_t serial_m2s_buffer;
void transport_master_init(void);
void transport_slave_init(void);
// returns false if valid data not received from slave
bool transport_master(matrix_row_t matrix[]);
void transport_slave(matrix_row_t matrix[]);