Keyboard: Add Lily58 Keyboard (#3893)

* add Lily58

* file fix
This commit is contained in:
Naoki Katahira 2018-09-16 02:14:39 +09:00 committed by Drashna Jaelre
parent db35065e14
commit 9712501bf3
22 changed files with 2266 additions and 0 deletions

21
keyboards/lily58/config.h Normal file
View File

@ -0,0 +1,21 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "serial_config.h"

162
keyboards/lily58/i2c.c Normal file
View File

@ -0,0 +1,162 @@
#include <util/twi.h>
#include <avr/io.h>
#include <stdlib.h>
#include <avr/interrupt.h>
#include <util/twi.h>
#include <stdbool.h>
#include "i2c.h"
#ifdef USE_I2C
// Limits the amount of we wait for any one i2c transaction.
// Since were running SCL line 100kHz (=> 10μs/bit), and each transactions is
// 9 bits, a single transaction will take around 90μs to complete.
//
// (F_CPU/SCL_CLOCK) => # of μC cycles to transfer a bit
// poll loop takes at least 8 clock cycles to execute
#define I2C_LOOP_TIMEOUT (9+1)*(F_CPU/SCL_CLOCK)/8
#define BUFFER_POS_INC() (slave_buffer_pos = (slave_buffer_pos+1)%SLAVE_BUFFER_SIZE)
volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
static volatile uint8_t slave_buffer_pos;
static volatile bool slave_has_register_set = false;
// Wait for an i2c operation to finish
inline static
void i2c_delay(void) {
uint16_t lim = 0;
while(!(TWCR & (1<<TWINT)) && lim < I2C_LOOP_TIMEOUT)
lim++;
// easier way, but will wait slightly longer
// _delay_us(100);
}
// Setup twi to run at 100kHz
void i2c_master_init(void) {
// no prescaler
TWSR = 0;
// Set TWI clock frequency to SCL_CLOCK. Need TWBR>10.
// Check datasheets for more info.
TWBR = ((F_CPU/SCL_CLOCK)-16)/2;
}
// Start a transaction with the given i2c slave address. The direction of the
// transfer is set with I2C_READ and I2C_WRITE.
// returns: 0 => success
// 1 => error
uint8_t i2c_master_start(uint8_t address) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTA);
i2c_delay();
// check that we started successfully
if ( (TW_STATUS != TW_START) && (TW_STATUS != TW_REP_START))
return 1;
TWDR = address;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
if ( (TW_STATUS != TW_MT_SLA_ACK) && (TW_STATUS != TW_MR_SLA_ACK) )
return 1; // slave did not acknowledge
else
return 0; // success
}
// Finish the i2c transaction.
void i2c_master_stop(void) {
TWCR = (1<<TWINT) | (1<<TWEN) | (1<<TWSTO);
uint16_t lim = 0;
while(!(TWCR & (1<<TWSTO)) && lim < I2C_LOOP_TIMEOUT)
lim++;
}
// Write one byte to the i2c slave.
// returns 0 => slave ACK
// 1 => slave NACK
uint8_t i2c_master_write(uint8_t data) {
TWDR = data;
TWCR = (1<<TWINT) | (1<<TWEN);
i2c_delay();
// check if the slave acknowledged us
return (TW_STATUS == TW_MT_DATA_ACK) ? 0 : 1;
}
// Read one byte from the i2c slave. If ack=1 the slave is acknowledged,
// if ack=0 the acknowledge bit is not set.
// returns: byte read from i2c device
uint8_t i2c_master_read(int ack) {
TWCR = (1<<TWINT) | (1<<TWEN) | (ack<<TWEA);
i2c_delay();
return TWDR;
}
void i2c_reset_state(void) {
TWCR = 0;
}
void i2c_slave_init(uint8_t address) {
TWAR = address << 0; // slave i2c address
// TWEN - twi enable
// TWEA - enable address acknowledgement
// TWINT - twi interrupt flag
// TWIE - enable the twi interrupt
TWCR = (1<<TWIE) | (1<<TWEA) | (1<<TWINT) | (1<<TWEN);
}
ISR(TWI_vect);
ISR(TWI_vect) {
uint8_t ack = 1;
switch(TW_STATUS) {
case TW_SR_SLA_ACK:
// this device has been addressed as a slave receiver
slave_has_register_set = false;
break;
case TW_SR_DATA_ACK:
// this device has received data as a slave receiver
// The first byte that we receive in this transaction sets the location
// of the read/write location of the slaves memory that it exposes over
// i2c. After that, bytes will be written at slave_buffer_pos, incrementing
// slave_buffer_pos after each write.
if(!slave_has_register_set) {
slave_buffer_pos = TWDR;
// don't acknowledge the master if this memory loctaion is out of bounds
if ( slave_buffer_pos >= SLAVE_BUFFER_SIZE ) {
ack = 0;
slave_buffer_pos = 0;
}
slave_has_register_set = true;
} else {
i2c_slave_buffer[slave_buffer_pos] = TWDR;
BUFFER_POS_INC();
}
break;
case TW_ST_SLA_ACK:
case TW_ST_DATA_ACK:
// master has addressed this device as a slave transmitter and is
// requesting data.
TWDR = i2c_slave_buffer[slave_buffer_pos];
BUFFER_POS_INC();
break;
case TW_BUS_ERROR: // something went wrong, reset twi state
TWCR = 0;
default:
break;
}
// Reset everything, so we are ready for the next TWI interrupt
TWCR |= (1<<TWIE) | (1<<TWINT) | (ack<<TWEA) | (1<<TWEN);
}
#endif

49
keyboards/lily58/i2c.h Normal file
View File

@ -0,0 +1,49 @@
#ifndef I2C_H
#define I2C_H
#include <stdint.h>
#ifndef F_CPU
#define F_CPU 16000000UL
#endif
#define I2C_READ 1
#define I2C_WRITE 0
#define I2C_ACK 1
#define I2C_NACK 0
#define SLAVE_BUFFER_SIZE 0x10
// i2c SCL clock frequency
#define SCL_CLOCK 400000L
extern volatile uint8_t i2c_slave_buffer[SLAVE_BUFFER_SIZE];
void i2c_master_init(void);
uint8_t i2c_master_start(uint8_t address);
void i2c_master_stop(void);
uint8_t i2c_master_write(uint8_t data);
uint8_t i2c_master_read(int);
void i2c_reset_state(void);
void i2c_slave_init(uint8_t address);
static inline unsigned char i2c_start_read(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_READ);
}
static inline unsigned char i2c_start_write(unsigned char addr) {
return i2c_master_start((addr << 1) | I2C_WRITE);
}
// from SSD1306 scrips
extern unsigned char i2c_rep_start(unsigned char addr);
extern void i2c_start_wait(unsigned char addr);
extern unsigned char i2c_readAck(void);
extern unsigned char i2c_readNak(void);
extern unsigned char i2c_read(unsigned char ack);
#define i2c_read(ack) (ack) ? i2c_readAck() : i2c_readNak();
#endif

View File

@ -0,0 +1,41 @@
/*
This is the c configuration file for the keymap
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
#include "config.h"
/* Use I2C or Serial, not both */
#define USE_SERIAL
// #define USE_I2C
/* Select hand configuration */
#define MASTER_LEFT
// #define MASTER_RIGHT
// #define EE_HANDS
// Underglow
/*
#undef RGBLED_NUM
#define RGBLED_NUM 14 // Number of LEDs
#define RGBLIGHT_ANIMATIONS
#define RGBLIGHT_SLEEP
*/

View File

@ -0,0 +1,155 @@
#include QMK_KEYBOARD_H
extern keymap_config_t keymap_config;
#define _QWERTY 0
#define _LOWER 1
#define _RAISE 2
#define _ADJUST 16
enum custom_keycodes {
QWERTY = SAFE_RANGE,
LOWER,
RAISE,
ADJUST,
};
const uint16_t PROGMEM keymaps[][MATRIX_ROWS][MATRIX_COLS] = {
/* QWERTY
* ,-----------------------------------------. ,-----------------------------------------.
* | ESC | 1 | 2 | 3 | 4 | 5 | | 6 | 7 | 8 | 9 | 0 | ~ |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* | Tab | Q | W | E | R | T | | Y | U | I | O | P | - |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* |LCTRL | A | S | D | F | G |-------. ,-------| H | J | K | L | ; | ' |
* |------+------+------+------+------+------| [ | | ] |------+------+------+------+------+------|
* |LShift| Z | X | C | V | B |-------| |-------| N | M | , | . | / |RShift|
* `-----------------------------------------/ / \ \-----------------------------------------'
* |LOWER | LGUI | Alt | /Space / \Enter \ |BackSP| RGUI |RAISE |
* | | | |/ / \ \ | | | |
* `-------------------''-------' '------''--------------------'
*/
[_QWERTY] = LAYOUT( \
KC_ESC, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, KC_GRV, \
KC_TAB, KC_Q, KC_W, KC_E, KC_R, KC_T, KC_Y, KC_U, KC_I, KC_O, KC_P, KC_MINS, \
KC_LCTRL, KC_A, KC_S, KC_D, KC_F, KC_G, KC_H, KC_J, KC_K, KC_L, KC_SCLN, KC_QUOT, \
KC_LSFT, KC_Z, KC_X, KC_C, KC_V, KC_B, KC_LBRC, KC_RBRC, KC_N, KC_M, KC_COMM, KC_DOT, KC_SLSH, KC_RSFT, \
LOWER,KC_LGUI, KC_LALT, KC_SPC, KC_ENT, KC_BSPC, KC_RGUI, RAISE \
),
/* LOWER
* ,-----------------------------------------. ,-----------------------------------------.
* | F1 | F2 | F3 | F4 | F5 | F6 | | F7 | F8 | F9 | F10 | F11 | F12 |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* | ~ | ! | @ | # | $ | % | | ^ | & | * | ( | ) | |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* | | | | | | |-------. ,-------| | _ | + | | | |
* |------+------+------+------+------+------| [ | | ] |------+------+------+------+------+------|
* | | | | | | |-------| |-------| |ISO ~ |ISO | | | | |
* `-----------------------------------------/ / \ \-----------------------------------------'
* |LOWER | LGUI | Alt | /Space / \Enter \ |BackSP| RGUI |RAISE |
* | | | |/ / \ \ | | | |
* `-------------------''-------' '------''--------------------'
*/
[_LOWER] = LAYOUT( \
KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, \
KC_TILD, KC_EXLM, KC_AT, KC_HASH, KC_DLR, KC_PERC, KC_CIRC, KC_AMPR, KC_ASTR, KC_LPRN, KC_RPRN, _______, \
_______, _______, _______, _______, _______, _______, _______, KC_UNDS, KC_PLUS, KC_LCBR, KC_RCBR, KC_PIPE, \
_______, _______, _______, _______, _______, _______, _______, _______, _______,S(KC_NUHS),S(KC_NUBS),_______, _______, _______,\
_______, _______, _______, _______, _______, _______, _______, _______\
),
/* RAISE
* ,-----------------------------------------. ,-----------------------------------------.
* | F1 | F2 | F3 | F4 | F5 | F6 | | F7 | F8 | F9 | F10 | F11 | F12 |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* | ` | 1 | 2 | 3 | 4 | 5 | | 6 | 7 | 8 | 9 | 0 | |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* | | | | | | |-------. ,-------| | Left | Down | Up |Right | |
* |------+------+------+------+------+------| [ | | ] |------+------+------+------+------+------|
* | | | | | | |-------| |-------| + | - | = | [ | ] | \ |
* `-----------------------------------------/ / \ \-----------------------------------------'
* |LOWER | LGUI | Alt | /Space / \Enter \ |BackSP| RGUI |RAISE |
* | | | |/ / \ \ | | | |
* `-------------------''-------' '------''--------------------'
*/
[_RAISE] = LAYOUT( \
KC_F1, KC_F2, KC_F3, KC_F4, KC_F5, KC_F6, KC_F7, KC_F8, KC_F9, KC_F10, KC_F11, KC_F12, \
KC_GRV, KC_1, KC_2, KC_3, KC_4, KC_5, KC_6, KC_7, KC_8, KC_9, KC_0, _______, \
_______, _______, _______, _______, _______, _______, XXXXXXX, KC_LEFT, KC_DOWN, KC_UP, KC_RGHT, XXXXXXX, \
_______, _______, _______, _______, _______, _______, _______, _______, KC_PLUS, KC_MINS, KC_EQL, KC_LBRC, KC_RBRC, KC_BSLS, \
_______, _______, _______, _______, _______, _______, _______, _______ \
),
/* ADJUST (Layers for Underglow)
* ,-----------------------------------------. ,-----------------------------------------.
* | | | | | | | | | | | | | |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* | | | | | | | | | | | | | |
* |------+------+------+------+------+------| |------+------+------+------+------+------|
* | | | | | | |-------. ,-------| | | | | | |
* |------+------+------+------+------+------| | | |------+------+------+------+------+------|
* | | | | | | |-------| |-------| | | | | | |
* `-----------------------------------------/ / \ \-----------------------------------------'
* |LOWER | LGUI | Alt | /Space / \Enter \ |BackSP| RGUI |RAISE |
* | | | |/ / \ \ | | | |
* `-------------------''-------' '------''--------------------'
*/
[_ADJUST] = LAYOUT( \
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, \
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, \
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, \
XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX, XXXXXXX,\
_______, _______, _______, _______, _______, _______, _______, _______ \
)
};
void persistent_default_layer_set(uint16_t default_layer) {
eeconfig_update_default_layer(default_layer);
default_layer_set(default_layer);
}
bool process_record_user(uint16_t keycode, keyrecord_t *record) {
switch (keycode) {
case QWERTY:
if (record->event.pressed) {
print("mode just switched to qwerty and this is a huge string\n");
set_single_persistent_default_layer(_QWERTY);
}
return false;
break;
case LOWER:
if (record->event.pressed) {
layer_on(_LOWER);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
} else {
layer_off(_LOWER);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
}
return false;
break;
case RAISE:
if (record->event.pressed) {
layer_on(_RAISE);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
} else {
layer_off(_RAISE);
update_tri_layer(_LOWER, _RAISE, _ADJUST);
}
return false;
break;
case ADJUST:
if (record->event.pressed) {
layer_on(_ADJUST);
} else {
layer_off(_ADJUST);
}
return false;
break;
}
return true;
}

View File

@ -0,0 +1,22 @@
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
OLED_ENABLE = no
RGBLIGHT_ENABLE = no
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
EXTRAKEY_ENABLE = no # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
NKRO_ENABLE = no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
MIDI_ENABLE = no # MIDI controls
AUDIO_ENABLE = no # Audio output on port C6
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
ONEHAND_ENABLE = no # Enable one-hand typing
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend

View File

@ -0,0 +1 @@
#include "lily58.h"

28
keyboards/lily58/lily58.h Normal file
View File

@ -0,0 +1,28 @@
#ifndef LILY58_H
#define LILY58_H
#include "quantum.h"
#ifdef KEYBOARD_lily58_rev1
#include "rev1.h"
#endif
// Used to create a keymap using only KC_ prefixed keys
#define LAYOUT_kc( \
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
L30, L31, L32, L33, L34, L35, L45, R40, R30, R31, R32, R33, R34, R35, \
L41, L42, L43, L44, R41, R42, R43, R44 \
) \
LAYOUT( \
KC_##L00, KC_##L01, KC_##L02, KC_##L03, KC_##L04, KC_##L05, KC_##R00, KC_##R01, KC_##R02, KC_##R03, KC_##R04, KC_##R05, \
KC_##L10, KC_##L11, KC_##L12, KC_##L13, KC_##L14, KC_##L15, KC_##R10, KC_##R11, KC_##R12, KC_##R13, KC_##R14, KC_##R15, \
KC_##L20, KC_##L21, KC_##L22, KC_##L23, KC_##L24, KC_##L25, KC_##R20, KC_##R21, KC_##R22, KC_##R23, KC_##R24, KC_##R25, \
KC_##L30, KC_##L31, KC_##L32, KC_##L33, KC_##L34, KC_##L35, KC_##L45, KC_##R40, KC_##R30, KC_##R31, KC_##R32, KC_##R33, KC_##R34, KC_##R35, \
KC_##L41, KC_##L42, KC_##L43, KC_##L44, KC_##R41, KC_##R42, KC_##R43, KC_##R44 \
)
#endif

459
keyboards/lily58/matrix.c Normal file
View File

@ -0,0 +1,459 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
/*
* scan matrix
*/
#include <stdint.h>
#include <stdbool.h>
#include <avr/io.h>
#include "wait.h"
#include "print.h"
#include "debug.h"
#include "util.h"
#include "matrix.h"
#include "split_util.h"
#include "pro_micro.h"
#include "config.h"
#include "timer.h"
#ifdef USE_I2C
# include "i2c.h"
#else // USE_SERIAL
# include "serial.h"
#endif
#ifndef DEBOUNCING_DELAY
# define DEBOUNCING_DELAY 5
#endif
#if (DEBOUNCING_DELAY > 0)
static uint16_t debouncing_time;
static bool debouncing = false;
#endif
#if (MATRIX_COLS <= 8)
# define print_matrix_header() print("\nr/c 01234567\n")
# define print_matrix_row(row) print_bin_reverse8(matrix_get_row(row))
# define matrix_bitpop(i) bitpop(matrix[i])
# define ROW_SHIFTER ((uint8_t)1)
#else
# error "Currently only supports 8 COLS"
#endif
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#define ERROR_DISCONNECT_COUNT 5
#define ROWS_PER_HAND (MATRIX_ROWS/2)
static uint8_t error_count = 0;
static const uint8_t row_pins[MATRIX_ROWS] = MATRIX_ROW_PINS;
static const uint8_t col_pins[MATRIX_COLS] = MATRIX_COL_PINS;
/* matrix state(1:on, 0:off) */
static matrix_row_t matrix[MATRIX_ROWS];
static matrix_row_t matrix_debouncing[MATRIX_ROWS];
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void);
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row);
static void unselect_rows(void);
static void select_row(uint8_t row);
static void unselect_row(uint8_t row);
#elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void);
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col);
static void unselect_cols(void);
static void unselect_col(uint8_t col);
static void select_col(uint8_t col);
#endif
__attribute__ ((weak))
void matrix_init_kb(void) {
matrix_init_user();
}
__attribute__ ((weak))
void matrix_scan_kb(void) {
matrix_scan_user();
}
__attribute__ ((weak))
void matrix_init_user(void) {
}
__attribute__ ((weak))
void matrix_scan_user(void) {
}
inline
uint8_t matrix_rows(void)
{
return MATRIX_ROWS;
}
inline
uint8_t matrix_cols(void)
{
return MATRIX_COLS;
}
void matrix_init(void)
{
debug_enable = true;
debug_matrix = true;
debug_mouse = true;
// initialize row and col
#if (DIODE_DIRECTION == COL2ROW)
unselect_rows();
init_cols();
#elif (DIODE_DIRECTION == ROW2COL)
unselect_cols();
init_rows();
#endif
TX_RX_LED_INIT;
// initialize matrix state: all keys off
for (uint8_t i=0; i < MATRIX_ROWS; i++) {
matrix[i] = 0;
matrix_debouncing[i] = 0;
}
matrix_init_quantum();
}
uint8_t _matrix_scan(void)
{
int offset = isLeftHand ? 0 : (ROWS_PER_HAND);
#if (DIODE_DIRECTION == COL2ROW)
// Set row, read cols
for (uint8_t current_row = 0; current_row < ROWS_PER_HAND; current_row++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_cols_on_row(matrix_debouncing+offset, current_row);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_cols_on_row(matrix+offset, current_row);
# endif
}
#elif (DIODE_DIRECTION == ROW2COL)
// Set col, read rows
for (uint8_t current_col = 0; current_col < MATRIX_COLS; current_col++) {
# if (DEBOUNCING_DELAY > 0)
bool matrix_changed = read_rows_on_col(matrix_debouncing+offset, current_col);
if (matrix_changed) {
debouncing = true;
debouncing_time = timer_read();
}
# else
read_rows_on_col(matrix+offset, current_col);
# endif
}
#endif
# if (DEBOUNCING_DELAY > 0)
if (debouncing && (timer_elapsed(debouncing_time) > DEBOUNCING_DELAY)) {
for (uint8_t i = 0; i < ROWS_PER_HAND; i++) {
matrix[i+offset] = matrix_debouncing[i+offset];
}
debouncing = false;
}
# endif
return 1;
}
#ifdef USE_I2C
// Get rows from other half over i2c
int i2c_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
int err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_WRITE);
if (err) goto i2c_error;
// start of matrix stored at 0x00
err = i2c_master_write(0x00);
if (err) goto i2c_error;
// Start read
err = i2c_master_start(SLAVE_I2C_ADDRESS + I2C_READ);
if (err) goto i2c_error;
if (!err) {
int i;
for (i = 0; i < ROWS_PER_HAND-1; ++i) {
matrix[slaveOffset+i] = i2c_master_read(I2C_ACK);
}
matrix[slaveOffset+i] = i2c_master_read(I2C_NACK);
i2c_master_stop();
} else {
i2c_error: // the cable is disconnceted, or something else went wrong
i2c_reset_state();
return err;
}
return 0;
}
#else // USE_SERIAL
int serial_transaction(void) {
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
if (serial_update_buffers()) {
return 1;
}
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = serial_slave_buffer[i];
}
return 0;
}
#endif
uint8_t matrix_scan(void)
{
uint8_t ret = _matrix_scan();
#ifdef USE_I2C
if( i2c_transaction() ) {
#else // USE_SERIAL
if( serial_transaction() ) {
#endif
// turn on the indicator led when halves are disconnected
TXLED1;
error_count++;
if (error_count > ERROR_DISCONNECT_COUNT) {
// reset other half if disconnected
int slaveOffset = (isLeftHand) ? (ROWS_PER_HAND) : 0;
for (int i = 0; i < ROWS_PER_HAND; ++i) {
matrix[slaveOffset+i] = 0;
}
}
} else {
// turn off the indicator led on no error
TXLED0;
error_count = 0;
}
matrix_scan_quantum();
return ret;
}
void matrix_slave_scan(void) {
_matrix_scan();
int offset = (isLeftHand) ? 0 : ROWS_PER_HAND;
#ifdef USE_I2C
for (int i = 0; i < ROWS_PER_HAND; ++i) {
i2c_slave_buffer[i] = matrix[offset+i];
}
#else // USE_SERIAL
for (int i = 0; i < ROWS_PER_HAND; ++i) {
serial_slave_buffer[i] = matrix[offset+i];
}
#endif
}
bool matrix_is_modified(void)
{
if (debouncing) return false;
return true;
}
inline
bool matrix_is_on(uint8_t row, uint8_t col)
{
return (matrix[row] & ((matrix_row_t)1<<col));
}
inline
matrix_row_t matrix_get_row(uint8_t row)
{
return matrix[row];
}
void matrix_print(void)
{
print("\nr/c 0123456789ABCDEF\n");
for (uint8_t row = 0; row < MATRIX_ROWS; row++) {
phex(row); print(": ");
pbin_reverse16(matrix_get_row(row));
print("\n");
}
}
uint8_t matrix_key_count(void)
{
uint8_t count = 0;
for (uint8_t i = 0; i < MATRIX_ROWS; i++) {
count += bitpop16(matrix[i]);
}
return count;
}
#if (DIODE_DIRECTION == COL2ROW)
static void init_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_cols_on_row(matrix_row_t current_matrix[], uint8_t current_row)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[current_row];
// Clear data in matrix row
current_matrix[current_row] = 0;
// Select row and wait for row selecton to stabilize
select_row(current_row);
wait_us(30);
// For each col...
for(uint8_t col_index = 0; col_index < MATRIX_COLS; col_index++) {
// Select the col pin to read (active low)
uint8_t pin = col_pins[col_index];
uint8_t pin_state = (_SFR_IO8(pin >> 4) & _BV(pin & 0xF));
// Populate the matrix row with the state of the col pin
current_matrix[current_row] |= pin_state ? 0 : (ROW_SHIFTER << col_index);
}
// Unselect row
unselect_row(current_row);
return (last_row_value != current_matrix[current_row]);
}
static void select_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_row(uint8_t row)
{
uint8_t pin = row_pins[row];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_rows(void)
{
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#elif (DIODE_DIRECTION == ROW2COL)
static void init_rows(void)
{
for(uint8_t x = 0; x < ROWS_PER_HAND; x++) {
uint8_t pin = row_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
static bool read_rows_on_col(matrix_row_t current_matrix[], uint8_t current_col)
{
bool matrix_changed = false;
// Select col and wait for col selecton to stabilize
select_col(current_col);
wait_us(30);
// For each row...
for(uint8_t row_index = 0; row_index < ROWS_PER_HAND; row_index++)
{
// Store last value of row prior to reading
matrix_row_t last_row_value = current_matrix[row_index];
// Check row pin state
if ((_SFR_IO8(row_pins[row_index] >> 4) & _BV(row_pins[row_index] & 0xF)) == 0)
{
// Pin LO, set col bit
current_matrix[row_index] |= (ROW_SHIFTER << current_col);
}
else
{
// Pin HI, clear col bit
current_matrix[row_index] &= ~(ROW_SHIFTER << current_col);
}
// Determine if the matrix changed state
if ((last_row_value != current_matrix[row_index]) && !(matrix_changed))
{
matrix_changed = true;
}
}
// Unselect col
unselect_col(current_col);
return matrix_changed;
}
static void select_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) |= _BV(pin & 0xF); // OUT
_SFR_IO8((pin >> 4) + 2) &= ~_BV(pin & 0xF); // LOW
}
static void unselect_col(uint8_t col)
{
uint8_t pin = col_pins[col];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
static void unselect_cols(void)
{
for(uint8_t x = 0; x < MATRIX_COLS; x++) {
uint8_t pin = col_pins[x];
_SFR_IO8((pin >> 4) + 1) &= ~_BV(pin & 0xF); // IN
_SFR_IO8((pin >> 4) + 2) |= _BV(pin & 0xF); // HI
}
}
#endif

View File

@ -0,0 +1,17 @@
# Lily58
Lily58 is 6×4+5keys column-staggered split keyboard.
![Lily58_01](https://user-images.githubusercontent.com/6285554/45210815-92744a00-b2cb-11e8-977a-8c1a93584f17.jpg)
![Lily58_02](https://user-images.githubusercontent.com/6285554/45337733-7b33a600-b5c4-11e8-85b0-35f1cc9bf946.png)
Keyboard Maintainer: [Naoki Katahira](https://github.com/kata0510/) [Twitter:@F_YUUCHI](https://twitter.com/F_YUUCHI)
Hardware Supported: Lily58 PCB, ProMicro
Hardware Availability: [PCB & Case Data](https://github.com/kata0510/Lily58)
Make example for this keyboard (after setting up your build environment):
make lily58:default
See the [build environment setup](https://docs.qmk.fm/#/getting_started_build_tools) and the [make instructions](https://docs.qmk.fm/#/getting_started_make_guide) for more information. Brand new to QMK? Start with our [Complete Newbs Guide](https://docs.qmk.fm/#/newbs).

View File

@ -0,0 +1,86 @@
/*
Copyright 2012 Jun Wako <wakojun@gmail.com>
Copyright 2015 Jack Humbert
Copyright 2017 F_YUUCHI
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#pragma once
//#include QMK_KEYBOARD_CONFIG_H
#include "config_common.h"
/* USB Device descriptor parameter */
#define VENDOR_ID 0xFC51
#define PRODUCT_ID 0x0058
#define DEVICE_VER 0x0100
#define MANUFACTURER F_YUUCHI
#define PRODUCT Lily58
#define DESCRIPTION Lily58 is 6×4+5keys column-staggered split keyboard.
/* key matrix size */
// Rows are doubled-up
#define MATRIX_ROWS 10
#define MATRIX_COLS 6
// wiring of each half
#define MATRIX_ROW_PINS { C6, D7, E6, B4, B5 }
#define MATRIX_COL_PINS { F6, F7, B1, B3, B2, B6 }
#define CATERINA_BOOTLOADER
/* define tapping term */
#define TAPPING_TERM 100
/* define if matrix has ghost */
//#define MATRIX_HAS_GHOST
/* Set 0 if debouncing isn't needed */
#define DEBOUNCING_DELAY 5
/* Mechanical locking support. Use KC_LCAP, KC_LNUM or KC_LSCR instead in keymap */
#define LOCKING_SUPPORT_ENABLE
/* Locking resynchronize hack */
#define LOCKING_RESYNC_ENABLE
/* key combination for command */
#define IS_COMMAND() ( \
keyboard_report->mods == (MOD_BIT(KC_LSHIFT) | MOD_BIT(KC_RSHIFT)) \
)
/* ws2812 RGB LED */
#define RGB_DI_PIN D3
#define RGBLIGHT_TIMER
#define RGBLED_NUM 14 // Number of LEDs
#define ws2812_PORTREG PORTD
#define ws2812_DDRREG DDRD
/*
* Feature disable options
* These options are also useful to firmware size reduction.
*/
/* disable debug print */
// #define NO_DEBUG
/* disable print */
// #define NO_PRINT
/* disable action features */
//#define NO_ACTION_LAYER
//#define NO_ACTION_TAPPING
//#define NO_ACTION_ONESHOT
//#define NO_ACTION_MACRO
//#define NO_ACTION_FUNCTION

View File

@ -0,0 +1,24 @@
#include "lily58.h"
/*
#ifdef SSD1306OLED
void led_set_kb(uint8_t usb_led) {
// put your keyboard LED indicator (ex: Caps Lock LED) toggling code here
led_set_user(usb_led);
}
#endif
*/
void matrix_init_kb(void) {
// // green led on
// DDRD |= (1<<5);
// PORTD &= ~(1<<5);
// // orange led on
// DDRB |= (1<<0);
// PORTB &= ~(1<<0);
matrix_init_user();
};

View File

@ -0,0 +1,61 @@
#pragma once
#include "lily58.h"
//void promicro_bootloader_jmp(bool program);
#include "quantum.h"
#ifdef USE_I2C
#include <stddef.h>
#ifdef __AVR__
#include <avr/io.h>
#include <avr/interrupt.h>
#endif
#endif
//void promicro_bootloader_jmp(bool program);
#ifndef FLIP_HALF
#define LAYOUT( \
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
L30, L31, L32, L33, L34, L35, L45, R40, R30, R31, R32, R33, R34, R35, \
L41, L42, L43, L44, R41, R42, R43, R44 \
) \
{ \
{ L00, L01, L02, L03, L04, L05 }, \
{ L10, L11, L12, L13, L14, L15 }, \
{ L20, L21, L22, L23, L24, L25 }, \
{ L30, L31, L32, L33, L34, L35 }, \
{ KC_NO, L41, L42, L43, L44, L45 }, \
{ R05, R04, R03, R02, R01, R00 }, \
{ R15, R14, R13, R12, R11, R10 }, \
{ R25, R24, R23, R22, R21, R20 }, \
{ R35, R34, R33, R32, R31, R30 }, \
{ KC_NO, R44, R43, R42, R41, R40 } \
}
#else
// Keymap with right side flipped
// (TRRS jack on both halves are to the right)
#define LAYOUT( \
L00, L01, L02, L03, L04, L05, R00, R01, R02, R03, R04, R05, \
L10, L11, L12, L13, L14, L15, R10, R11, R12, R13, R14, R15, \
L20, L21, L22, L23, L24, L25, R20, R21, R22, R23, R24, R25, \
L30, L31, L32, L33, L34, L35, L45, R30, R31, R32, R33, R34, R35, R45, \
L41, L42, L43, L44, R41, R42, R43, R44 \
) \
{ \
{ L00, L01, L02, L03, L04, L05 }, \
{ L10, L11, L12, L13, L14, L15 }, \
{ L20, L21, L22, L23, L24, L25 }, \
{ L30, L31, L32, L33, L34, L35 }, \
{ KC_NO, L41, L42, L43, L44, L45 }, \
{ R00, R01, R02, R03, R04, R05 }, \
{ R10, R11, R12, R13, R14, R15 }, \
{ R20, R21, R22, R23, R24, R25 }, \
{ R30, R31, R32, R33, R34, R35 }, \
{ KC_NO, R41, R42, R43, R44, R45 } \
}
#endif

View File

@ -0,0 +1 @@
BACKLIGHT_ENABLE = no

76
keyboards/lily58/rules.mk Normal file
View File

@ -0,0 +1,76 @@
SRC += matrix.c \
i2c.c \
split_util.c \
serial.c \
ssd1306.c
# MCU name
#MCU = at90usb1287
MCU = atmega32u4
# Processor frequency.
# This will define a symbol, F_CPU, in all source code files equal to the
# processor frequency in Hz. You can then use this symbol in your source code to
# calculate timings. Do NOT tack on a 'UL' at the end, this will be done
# automatically to create a 32-bit value in your source code.
#
# This will be an integer division of F_USB below, as it is sourced by
# F_USB after it has run through any CPU prescalers. Note that this value
# does not *change* the processor frequency - it should merely be updated to
# reflect the processor speed set externally so that the code can use accurate
# software delays.
F_CPU = 16000000
#
# LUFA specific
#
# Target architecture (see library "Board Types" documentation).
ARCH = AVR8
# Input clock frequency.
# This will define a symbol, F_USB, in all source code files equal to the
# input clock frequency (before any prescaling is performed) in Hz. This value may
# differ from F_CPU if prescaling is used on the latter, and is required as the
# raw input clock is fed directly to the PLL sections of the AVR for high speed
# clock generation for the USB and other AVR subsections. Do NOT tack on a 'UL'
# at the end, this will be done automatically to create a 32-bit value in your
# source code.
#
# If no clock division is performed on the input clock inside the AVR (via the
# CPU clock adjust registers or the clock division fuses), this will be equal to F_CPU.
F_USB = $(F_CPU)
# Interrupt driven control endpoint task(+60)
OPT_DEFS += -DINTERRUPT_CONTROL_ENDPOINT
# Bootloader
# This definition is optional, and if your keyboard supports multiple bootloaders of
# different sizes, comment this out, and the correct address will be loaded
# automatically (+60). See bootloader.mk for all options.
BOOTLOADER = caterina
# Build Options
# change to "no" to disable the options, or define them in the Makefile in
# the appropriate keymap folder that will get included automatically
#
BOOTMAGIC_ENABLE = no # Virtual DIP switch configuration(+1000)
MOUSEKEY_ENABLE = no # Mouse keys(+4700)
EXTRAKEY_ENABLE = no # Audio control and System control(+450)
CONSOLE_ENABLE = no # Console for debug(+400)
COMMAND_ENABLE = no # Commands for debug and configuration
NKRO_ENABLE = no # Nkey Rollover - if this doesn't work, see here: https://github.com/tmk/tmk_keyboard/wiki/FAQ#nkro-doesnt-work
BACKLIGHT_ENABLE = no # Enable keyboard backlight functionality
MIDI_ENABLE = no # MIDI controls
AUDIO_ENABLE = no # Audio output on port C6
UNICODE_ENABLE = no # Unicode
BLUETOOTH_ENABLE = no # Enable Bluetooth with the Adafruit EZ-Key HID
RGBLIGHT_ENABLE = no # Enable WS2812 RGB underlight. Do not enable this with audio at the same time.
SUBPROJECT_rev1 = no
USE_I2C = no
# Do not enable SLEEP_LED_ENABLE. it uses the same timer as BACKLIGHT_ENABLE
SLEEP_LED_ENABLE = no # Breathing sleep LED during USB suspend
CUSTOM_MATRIX = yes
DEFAULT_FOLDER = lily58/rev1

445
keyboards/lily58/serial.c Normal file
View File

@ -0,0 +1,445 @@
/*
* WARNING: be careful changing this code, it is very timing dependent
*/
#ifndef F_CPU
#define F_CPU 16000000
#endif
#include <avr/io.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <stddef.h>
#include <stdbool.h>
#include "serial.h"
//#include <pro_micro.h>
#ifdef USE_SERIAL
//#ifndef USE_SERIAL_PD2
#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */
#if SERIAL_SLAVE_BUFFER_LENGTH > 0
uint8_t volatile serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH] = {0};
#endif
#if SERIAL_MASTER_BUFFER_LENGTH > 0
uint8_t volatile serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH] = {0};
#endif
uint8_t volatile status0 = 0;
SSTD_t transactions[] = {
{ (uint8_t *)&status0,
#if SERIAL_MASTER_BUFFER_LENGTH > 0
sizeof(serial_master_buffer), (uint8_t *)serial_master_buffer,
#else
0, (uint8_t *)NULL,
#endif
#if SERIAL_SLAVE_BUFFER_LENGTH > 0
sizeof(serial_slave_buffer), (uint8_t *)serial_slave_buffer
#else
0, (uint8_t *)NULL,
#endif
}
};
void serial_master_init(void)
{ soft_serial_initiator_init(transactions); }
void serial_slave_init(void)
{ soft_serial_target_init(transactions); }
// 0 => no error
// 1 => slave did not respond
// 2 => checksum error
int serial_update_buffers()
{ return soft_serial_transaction(); }
#endif // Simple API (OLD API, compatible with let's split serial.c)
#define ALWAYS_INLINE __attribute__((always_inline))
#define NO_INLINE __attribute__((noinline))
#define _delay_sub_us(x) __builtin_avr_delay_cycles(x)
// Serial pulse period in microseconds.
#define TID_SEND_ADJUST 14
#define SELECT_SERIAL_SPEED 1
#if SELECT_SERIAL_SPEED == 0
// Very High speed
#define SERIAL_DELAY 4 // micro sec
#define READ_WRITE_START_ADJUST 33 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#elif SELECT_SERIAL_SPEED == 1
// High speed
#define SERIAL_DELAY 6 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#elif SELECT_SERIAL_SPEED == 2
// Middle speed
#define SERIAL_DELAY 12 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#elif SELECT_SERIAL_SPEED == 3
// Low speed
#define SERIAL_DELAY 24 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#elif SELECT_SERIAL_SPEED == 4
// Very Low speed
#define SERIAL_DELAY 50 // micro sec
#define READ_WRITE_START_ADJUST 30 // cycles
#define READ_WRITE_WIDTH_ADJUST 3 // cycles
#else
#error Illegal Serial Speed
#endif
#define SERIAL_DELAY_HALF1 (SERIAL_DELAY/2)
#define SERIAL_DELAY_HALF2 (SERIAL_DELAY - SERIAL_DELAY/2)
#define SLAVE_INT_WIDTH_US 1
#ifndef SERIAL_USE_MULTI_TRANSACTION
#define SLAVE_INT_RESPONSE_TIME SERIAL_DELAY
#else
#define SLAVE_INT_ACK_WIDTH_UNIT 2
#define SLAVE_INT_ACK_WIDTH 4
#endif
static SSTD_t *Transaction_table = NULL;
inline static
void serial_delay(void) {
_delay_us(SERIAL_DELAY);
}
inline static
void serial_delay_half1(void) {
_delay_us(SERIAL_DELAY_HALF1);
}
inline static
void serial_delay_half2(void) {
_delay_us(SERIAL_DELAY_HALF2);
}
inline static void serial_output(void) ALWAYS_INLINE;
inline static
void serial_output(void) {
SERIAL_PIN_DDR |= SERIAL_PIN_MASK;
}
// make the serial pin an input with pull-up resistor
inline static void serial_input_with_pullup(void) ALWAYS_INLINE;
inline static
void serial_input_with_pullup(void) {
SERIAL_PIN_DDR &= ~SERIAL_PIN_MASK;
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
inline static
uint8_t serial_read_pin(void) {
return !!(SERIAL_PIN_INPUT & SERIAL_PIN_MASK);
}
inline static void serial_low(void) ALWAYS_INLINE;
inline static
void serial_low(void) {
SERIAL_PIN_PORT &= ~SERIAL_PIN_MASK;
}
inline static void serial_high(void) ALWAYS_INLINE;
inline static
void serial_high(void) {
SERIAL_PIN_PORT |= SERIAL_PIN_MASK;
}
void soft_serial_initiator_init(SSTD_t *sstd_table)
{
Transaction_table = sstd_table;
serial_output();
serial_high();
}
void soft_serial_target_init(SSTD_t *sstd_table)
{
Transaction_table = sstd_table;
serial_input_with_pullup();
#if SERIAL_PIN_MASK == _BV(PD0)
// Enable INT0
EIMSK |= _BV(INT0);
// Trigger on falling edge of INT0
EICRA &= ~(_BV(ISC00) | _BV(ISC01));
#elif SERIAL_PIN_MASK == _BV(PD2)
// Enable INT2
EIMSK |= _BV(INT2);
// Trigger on falling edge of INT2
EICRA &= ~(_BV(ISC20) | _BV(ISC21));
#else
#error unknown SERIAL_PIN_MASK value
#endif
}
// Used by the sender to synchronize timing with the reciver.
static void sync_recv(void) NO_INLINE;
static
void sync_recv(void) {
for (uint8_t i = 0; i < SERIAL_DELAY*5 && serial_read_pin(); i++ ) {
}
// This shouldn't hang if the target disconnects because the
// serial line will float to high if the target does disconnect.
while (!serial_read_pin());
}
// Used by the reciver to send a synchronization signal to the sender.
static void sync_send(void)NO_INLINE;
static
void sync_send(void) {
serial_low();
serial_delay();
serial_high();
}
// Reads a byte from the serial line
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) NO_INLINE;
static uint8_t serial_read_chunk(uint8_t *pterrcount, uint8_t bit) {
uint8_t byte, i, p, pb;
_delay_sub_us(READ_WRITE_START_ADJUST);
for( i = 0, byte = 0, p = 0; i < bit; i++ ) {
serial_delay_half1(); // read the middle of pulses
if( serial_read_pin() ) {
byte = (byte << 1) | 1; p ^= 1;
} else {
byte = (byte << 1) | 0; p ^= 0;
}
_delay_sub_us(READ_WRITE_WIDTH_ADJUST);
serial_delay_half2();
}
/* recive parity bit */
serial_delay_half1(); // read the middle of pulses
pb = serial_read_pin();
_delay_sub_us(READ_WRITE_WIDTH_ADJUST);
serial_delay_half2();
*pterrcount += (p != pb)? 1 : 0;
return byte;
}
// Sends a byte with MSB ordering
void serial_write_chunk(uint8_t data, uint8_t bit) NO_INLINE;
void serial_write_chunk(uint8_t data, uint8_t bit) {
uint8_t b, p;
for( p = 0, b = 1<<(bit-1); b ; b >>= 1) {
if(data & b) {
serial_high(); p ^= 1;
} else {
serial_low(); p ^= 0;
}
serial_delay();
}
/* send parity bit */
if(p & 1) { serial_high(); }
else { serial_low(); }
serial_delay();
serial_low(); // sync_send() / senc_recv() need raise edge
}
static void serial_send_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
void serial_send_packet(uint8_t *buffer, uint8_t size) {
for (uint8_t i = 0; i < size; ++i) {
uint8_t data;
data = buffer[i];
sync_send();
serial_write_chunk(data,8);
}
}
static uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) NO_INLINE;
static
uint8_t serial_recive_packet(uint8_t *buffer, uint8_t size) {
uint8_t pecount = 0;
for (uint8_t i = 0; i < size; ++i) {
uint8_t data;
sync_recv();
data = serial_read_chunk(&pecount, 8);
buffer[i] = data;
}
return pecount == 0;
}
inline static
void change_sender2reciver(void) {
sync_send(); //0
serial_delay_half1(); //1
serial_low(); //2
serial_input_with_pullup(); //2
serial_delay_half1(); //3
}
inline static
void change_reciver2sender(void) {
sync_recv(); //0
serial_delay(); //1
serial_low(); //3
serial_output(); //3
serial_delay_half1(); //4
}
// interrupt handle to be used by the target device
ISR(SERIAL_PIN_INTERRUPT) {
#ifndef SERIAL_USE_MULTI_TRANSACTION
serial_low();
serial_output();
SSTD_t *trans = Transaction_table;
#else
// recive transaction table index
uint8_t tid;
uint8_t pecount = 0;
sync_recv();
tid = serial_read_chunk(&pecount,4);
if(pecount> 0)
return;
serial_delay_half1();
serial_high(); // response step1 low->high
serial_output();
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT*SLAVE_INT_ACK_WIDTH);
SSTD_t *trans = &Transaction_table[tid];
serial_low(); // response step2 ack high->low
#endif
// target send phase
if( trans->target2initiator_buffer_size > 0 )
serial_send_packet((uint8_t *)trans->target2initiator_buffer,
trans->target2initiator_buffer_size);
// target switch to input
change_sender2reciver();
// target recive phase
if( trans->initiator2target_buffer_size > 0 ) {
if (serial_recive_packet((uint8_t *)trans->initiator2target_buffer,
trans->initiator2target_buffer_size) ) {
*trans->status = TRANSACTION_ACCEPTED;
} else {
*trans->status = TRANSACTION_DATA_ERROR;
}
} else {
*trans->status = TRANSACTION_ACCEPTED;
}
sync_recv(); //weit initiator output to high
}
/////////
// start transaction by initiator
//
// int soft_serial_transaction(int sstd_index)
//
// Returns:
// TRANSACTION_END
// TRANSACTION_NO_RESPONSE
// TRANSACTION_DATA_ERROR
// this code is very time dependent, so we need to disable interrupts
#ifndef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_transaction(void) {
SSTD_t *trans = Transaction_table;
#else
int soft_serial_transaction(int sstd_index) {
SSTD_t *trans = &Transaction_table[sstd_index];
#endif
cli();
// signal to the target that we want to start a transaction
serial_output();
serial_low();
_delay_us(SLAVE_INT_WIDTH_US);
#ifndef SERIAL_USE_MULTI_TRANSACTION
// wait for the target response
serial_input_with_pullup();
_delay_us(SLAVE_INT_RESPONSE_TIME);
// check if the target is present
if (serial_read_pin()) {
// target failed to pull the line low, assume not present
serial_output();
serial_high();
*trans->status = TRANSACTION_NO_RESPONSE;
sei();
return TRANSACTION_NO_RESPONSE;
}
#else
// send transaction table index
sync_send();
_delay_sub_us(TID_SEND_ADJUST);
serial_write_chunk(sstd_index, 4);
serial_delay_half1();
// wait for the target response (step1 low->high)
serial_input_with_pullup();
while( !serial_read_pin() ) {
_delay_sub_us(2);
}
// check if the target is present (step2 high->low)
for( int i = 0; serial_read_pin(); i++ ) {
if (i > SLAVE_INT_ACK_WIDTH + 1) {
// slave failed to pull the line low, assume not present
serial_output();
serial_high();
*trans->status = TRANSACTION_NO_RESPONSE;
sei();
return TRANSACTION_NO_RESPONSE;
}
_delay_sub_us(SLAVE_INT_ACK_WIDTH_UNIT);
}
#endif
// initiator recive phase
// if the target is present syncronize with it
if( trans->target2initiator_buffer_size > 0 ) {
if (!serial_recive_packet((uint8_t *)trans->target2initiator_buffer,
trans->target2initiator_buffer_size) ) {
serial_output();
serial_high();
*trans->status = TRANSACTION_DATA_ERROR;
sei();
return TRANSACTION_DATA_ERROR;
}
}
// initiator switch to output
change_reciver2sender();
// initiator send phase
if( trans->initiator2target_buffer_size > 0 ) {
serial_send_packet((uint8_t *)trans->initiator2target_buffer,
trans->initiator2target_buffer_size);
}
// always, release the line when not in use
sync_send();
*trans->status = TRANSACTION_END;
sei();
return TRANSACTION_END;
}
#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index) {
SSTD_t *trans = &Transaction_table[sstd_index];
cli();
int retval = *trans->status;
*trans->status = 0;;
sei();
return retval;
}
#endif
#endif

80
keyboards/lily58/serial.h Normal file
View File

@ -0,0 +1,80 @@
#ifndef SOFT_SERIAL_H
#define SOFT_SERIAL_H
#include <stdbool.h>
// /////////////////////////////////////////////////////////////////
// Need Soft Serial defines in serial_config.h
// /////////////////////////////////////////////////////////////////
// ex.
// #define SERIAL_PIN_DDR DDRD
// #define SERIAL_PIN_PORT PORTD
// #define SERIAL_PIN_INPUT PIND
// #define SERIAL_PIN_MASK _BV(PD?) ?=0,2
// #define SERIAL_PIN_INTERRUPT INT?_vect ?=0,2
//
// //// USE Simple API (OLD API, compatible with let's split serial.c)
// ex.
// #define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
// #define SERIAL_MASTER_BUFFER_LENGTH 1
//
// //// USE flexible API (using multi-type transaction function)
// #define SERIAL_USE_MULTI_TRANSACTION
//
// /////////////////////////////////////////////////////////////////
#ifndef SERIAL_USE_MULTI_TRANSACTION
/* --- USE Simple API (OLD API, compatible with let's split serial.c) */
#if SERIAL_SLAVE_BUFFER_LENGTH > 0
extern volatile uint8_t serial_slave_buffer[SERIAL_SLAVE_BUFFER_LENGTH];
#endif
#if SERIAL_MASTER_BUFFER_LENGTH > 0
extern volatile uint8_t serial_master_buffer[SERIAL_MASTER_BUFFER_LENGTH];
#endif
void serial_master_init(void);
void serial_slave_init(void);
int serial_update_buffers(void);
#endif // USE Simple API
// Soft Serial Transaction Descriptor
typedef struct _SSTD_t {
uint8_t *status;
uint8_t initiator2target_buffer_size;
uint8_t *initiator2target_buffer;
uint8_t target2initiator_buffer_size;
uint8_t *target2initiator_buffer;
} SSTD_t;
// initiator is transaction start side
void soft_serial_initiator_init(SSTD_t *sstd_table);
// target is interrupt accept side
void soft_serial_target_init(SSTD_t *sstd_table);
// initiator resullt
#define TRANSACTION_END 0
#define TRANSACTION_NO_RESPONSE 0x1
#define TRANSACTION_DATA_ERROR 0x2
#ifndef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_transaction(void);
#else
int soft_serial_transaction(int sstd_index);
#endif
// target status
// *SSTD_t.status has
// initiator:
// TRANSACTION_END
// or TRANSACTION_NO_RESPONSE
// or TRANSACTION_DATA_ERROR
// target:
// TRANSACTION_DATA_ERROR
// or TRANSACTION_ACCEPTED
#define TRANSACTION_ACCEPTED 0x4
#ifdef SERIAL_USE_MULTI_TRANSACTION
int soft_serial_get_and_clean_status(int sstd_index);
#endif
#endif /* SOFT_SERIAL_H */

View File

@ -0,0 +1,8 @@
#define SERIAL_PIN_DDR DDRD
#define SERIAL_PIN_PORT PORTD
#define SERIAL_PIN_INPUT PIND
#define SERIAL_PIN_MASK _BV(PD2)
#define SERIAL_PIN_INTERRUPT INT2_vect
#define SERIAL_SLAVE_BUFFER_LENGTH MATRIX_ROWS/2
#define SERIAL_MASTER_BUFFER_LENGTH 1

View File

@ -0,0 +1,86 @@
#include <avr/io.h>
#include <avr/wdt.h>
#include <avr/power.h>
#include <avr/interrupt.h>
#include <util/delay.h>
#include <avr/eeprom.h>
#include "split_util.h"
#include "matrix.h"
#include "keyboard.h"
#include "config.h"
#include "timer.h"
#ifdef USE_I2C
# include "i2c.h"
#else
# include "serial.h"
#endif
volatile bool isLeftHand = true;
static void setup_handedness(void) {
#ifdef EE_HANDS
isLeftHand = eeprom_read_byte(EECONFIG_HANDEDNESS);
#else
// I2C_MASTER_RIGHT is deprecated, use MASTER_RIGHT instead, since this works for both serial and i2c
#if defined(I2C_MASTER_RIGHT) || defined(MASTER_RIGHT)
isLeftHand = !has_usb();
#else
isLeftHand = has_usb();
#endif
#endif
}
static void keyboard_master_setup(void) {
#ifdef USE_I2C
i2c_master_init();
//#ifdef SSD1306OLED
// matrix_master_OLED_init ();
//#endif
#else
serial_master_init();
#endif
}
static void keyboard_slave_setup(void) {
timer_init();
#ifdef USE_I2C
i2c_slave_init(SLAVE_I2C_ADDRESS);
#else
serial_slave_init();
#endif
}
bool has_usb(void) {
USBCON |= (1 << OTGPADE); //enables VBUS pad
_delay_us(5);
return (USBSTA & (1<<VBUS)); //checks state of VBUS
}
void split_keyboard_setup(void) {
setup_handedness();
if (has_usb()) {
keyboard_master_setup();
} else {
keyboard_slave_setup();
}
sei();
}
void keyboard_slave_loop(void) {
matrix_init();
while (1) {
matrix_slave_scan();
}
}
// this code runs before the usb and keyboard is initialized
void matrix_setup(void) {
split_keyboard_setup();
if (!has_usb()) {
keyboard_slave_loop();
}
}

View File

@ -0,0 +1,20 @@
#ifndef SPLIT_KEYBOARD_UTIL_H
#define SPLIT_KEYBOARD_UTIL_H
#include <stdbool.h>
#include "eeconfig.h"
#define SLAVE_I2C_ADDRESS 0x32
extern volatile bool isLeftHand;
// slave version of matix scan, defined in matrix.c
void matrix_slave_scan(void);
void split_keyboard_setup(void);
bool has_usb(void);
void keyboard_slave_loop(void);
void matrix_master_OLED_init (void);
#endif

330
keyboards/lily58/ssd1306.c Normal file
View File

@ -0,0 +1,330 @@
#ifdef SSD1306OLED
#include "ssd1306.h"
#include "i2c.h"
#include <string.h>
#include "print.h"
#include "glcdfont.c"
#ifdef ADAFRUIT_BLE_ENABLE
#include "adafruit_ble.h"
#endif
#ifdef PROTOCOL_LUFA
#include "lufa.h"
#endif
#include "sendchar.h"
#include "timer.h"
// Set this to 1 to help diagnose early startup problems
// when testing power-on with ble. Turn it off otherwise,
// as the latency of printing most of the debug info messes
// with the matrix scan, causing keys to drop.
#define DEBUG_TO_SCREEN 0
//static uint16_t last_battery_update;
//static uint32_t vbat;
//#define BatteryUpdateInterval 10000 /* milliseconds */
#define ScreenOffInterval 300000 /* milliseconds */
#if DEBUG_TO_SCREEN
static uint8_t displaying;
#endif
static uint16_t last_flush;
// Write command sequence.
// Returns true on success.
static inline bool _send_cmd1(uint8_t cmd) {
bool res = false;
if (i2c_start_write(SSD1306_ADDRESS)) {
xprintf("failed to start write to %d\n", SSD1306_ADDRESS);
goto done;
}
if (i2c_master_write(0x0 /* command byte follows */)) {
print("failed to write control byte\n");
goto done;
}
if (i2c_master_write(cmd)) {
xprintf("failed to write command %d\n", cmd);
goto done;
}
res = true;
done:
i2c_master_stop();
return res;
}
// Write 2-byte command sequence.
// Returns true on success
static inline bool _send_cmd2(uint8_t cmd, uint8_t opr) {
if (!_send_cmd1(cmd)) {
return false;
}
return _send_cmd1(opr);
}
// Write 3-byte command sequence.
// Returns true on success
static inline bool _send_cmd3(uint8_t cmd, uint8_t opr1, uint8_t opr2) {
if (!_send_cmd1(cmd)) {
return false;
}
if (!_send_cmd1(opr1)) {
return false;
}
return _send_cmd1(opr2);
}
#define send_cmd1(c) if (!_send_cmd1(c)) {goto done;}
#define send_cmd2(c,o) if (!_send_cmd2(c,o)) {goto done;}
#define send_cmd3(c,o1,o2) if (!_send_cmd3(c,o1,o2)) {goto done;}
static void clear_display(void) {
matrix_clear(&display);
// Clear all of the display bits (there can be random noise
// in the RAM on startup)
send_cmd3(PageAddr, 0, (DisplayHeight / 8) - 1);
send_cmd3(ColumnAddr, 0, DisplayWidth - 1);
if (i2c_start_write(SSD1306_ADDRESS)) {
goto done;
}
if (i2c_master_write(0x40)) {
// Data mode
goto done;
}
for (uint8_t row = 0; row < MatrixRows; ++row) {
for (uint8_t col = 0; col < DisplayWidth; ++col) {
i2c_master_write(0);
}
}
display.dirty = false;
done:
i2c_master_stop();
}
#if DEBUG_TO_SCREEN
#undef sendchar
static int8_t capture_sendchar(uint8_t c) {
sendchar(c);
iota_gfx_write_char(c);
if (!displaying) {
iota_gfx_flush();
}
return 0;
}
#endif
bool iota_gfx_init(bool rotate) {
bool success = false;
send_cmd1(DisplayOff);
send_cmd2(SetDisplayClockDiv, 0x80);
send_cmd2(SetMultiPlex, DisplayHeight - 1);
send_cmd2(SetDisplayOffset, 0);
send_cmd1(SetStartLine | 0x0);
send_cmd2(SetChargePump, 0x14 /* Enable */);
send_cmd2(SetMemoryMode, 0 /* horizontal addressing */);
if(rotate){
// the following Flip the display orientation 180 degrees
send_cmd1(SegRemap);
send_cmd1(ComScanInc);
}else{
// Flips the display orientation 0 degrees
send_cmd1(SegRemap | 0x1);
send_cmd1(ComScanDec);
}
send_cmd2(SetComPins, 0x2);
send_cmd2(SetContrast, 0x8f);
send_cmd2(SetPreCharge, 0xf1);
send_cmd2(SetVComDetect, 0x40);
send_cmd1(DisplayAllOnResume);
send_cmd1(NormalDisplay);
send_cmd1(DeActivateScroll);
send_cmd1(DisplayOn);
send_cmd2(SetContrast, 0); // Dim
clear_display();
success = true;
iota_gfx_flush();
#if DEBUG_TO_SCREEN
print_set_sendchar(capture_sendchar);
#endif
done:
return success;
}
bool iota_gfx_off(void) {
bool success = false;
send_cmd1(DisplayOff);
success = true;
done:
return success;
}
bool iota_gfx_on(void) {
bool success = false;
send_cmd1(DisplayOn);
success = true;
done:
return success;
}
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c) {
*matrix->cursor = c;
++matrix->cursor;
if (matrix->cursor - &matrix->display[0][0] == sizeof(matrix->display)) {
// We went off the end; scroll the display upwards by one line
memmove(&matrix->display[0], &matrix->display[1],
MatrixCols * (MatrixRows - 1));
matrix->cursor = &matrix->display[MatrixRows - 1][0];
memset(matrix->cursor, ' ', MatrixCols);
}
}
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c) {
matrix->dirty = true;
if (c == '\n') {
// Clear to end of line from the cursor and then move to the
// start of the next line
uint8_t cursor_col = (matrix->cursor - &matrix->display[0][0]) % MatrixCols;
while (cursor_col++ < MatrixCols) {
matrix_write_char_inner(matrix, ' ');
}
return;
}
matrix_write_char_inner(matrix, c);
}
void iota_gfx_write_char(uint8_t c) {
matrix_write_char(&display, c);
}
void matrix_write(struct CharacterMatrix *matrix, const char *data) {
const char *end = data + strlen(data);
while (data < end) {
matrix_write_char(matrix, *data);
++data;
}
}
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data) {
char data_ln[strlen(data)+2];
snprintf(data_ln, sizeof(data_ln), "%s\n", data);
matrix_write(matrix, data_ln);
}
void iota_gfx_write(const char *data) {
matrix_write(&display, data);
}
void matrix_write_P(struct CharacterMatrix *matrix, const char *data) {
while (true) {
uint8_t c = pgm_read_byte(data);
if (c == 0) {
return;
}
matrix_write_char(matrix, c);
++data;
}
}
void iota_gfx_write_P(const char *data) {
matrix_write_P(&display, data);
}
void matrix_clear(struct CharacterMatrix *matrix) {
memset(matrix->display, ' ', sizeof(matrix->display));
matrix->cursor = &matrix->display[0][0];
matrix->dirty = true;
}
void iota_gfx_clear_screen(void) {
matrix_clear(&display);
}
void matrix_render(struct CharacterMatrix *matrix) {
last_flush = timer_read();
iota_gfx_on();
#if DEBUG_TO_SCREEN
++displaying;
#endif
// Move to the home position
send_cmd3(PageAddr, 0, MatrixRows - 1);
send_cmd3(ColumnAddr, 0, (MatrixCols * FontWidth) - 1);
if (i2c_start_write(SSD1306_ADDRESS)) {
goto done;
}
if (i2c_master_write(0x40)) {
// Data mode
goto done;
}
for (uint8_t row = 0; row < MatrixRows; ++row) {
for (uint8_t col = 0; col < MatrixCols; ++col) {
const uint8_t *glyph = font + (matrix->display[row][col] * FontWidth);
for (uint8_t glyphCol = 0; glyphCol < FontWidth; ++glyphCol) {
uint8_t colBits = pgm_read_byte(glyph + glyphCol);
i2c_master_write(colBits);
}
// 1 column of space between chars (it's not included in the glyph)
//i2c_master_write(0);
}
}
matrix->dirty = false;
done:
i2c_master_stop();
#if DEBUG_TO_SCREEN
--displaying;
#endif
}
void iota_gfx_flush(void) {
matrix_render(&display);
}
__attribute__ ((weak))
void iota_gfx_task_user(void) {
}
void iota_gfx_task(void) {
iota_gfx_task_user();
if (display.dirty) {
iota_gfx_flush();
}
if (timer_elapsed(last_flush) > ScreenOffInterval) {
iota_gfx_off();
}
}
#endif

View File

@ -0,0 +1,94 @@
#ifndef SSD1306_H
#define SSD1306_H
#include <stdbool.h>
#include <stdio.h>
#include "pincontrol.h"
#include "config.h"
enum ssd1306_cmds {
DisplayOff = 0xAE,
DisplayOn = 0xAF,
SetContrast = 0x81,
DisplayAllOnResume = 0xA4,
DisplayAllOn = 0xA5,
NormalDisplay = 0xA6,
InvertDisplay = 0xA7,
SetDisplayOffset = 0xD3,
SetComPins = 0xda,
SetVComDetect = 0xdb,
SetDisplayClockDiv = 0xD5,
SetPreCharge = 0xd9,
SetMultiPlex = 0xa8,
SetLowColumn = 0x00,
SetHighColumn = 0x10,
SetStartLine = 0x40,
SetMemoryMode = 0x20,
ColumnAddr = 0x21,
PageAddr = 0x22,
ComScanInc = 0xc0,
ComScanDec = 0xc8,
SegRemap = 0xa0,
SetChargePump = 0x8d,
ExternalVcc = 0x01,
SwitchCapVcc = 0x02,
ActivateScroll = 0x2f,
DeActivateScroll = 0x2e,
SetVerticalScrollArea = 0xa3,
RightHorizontalScroll = 0x26,
LeftHorizontalScroll = 0x27,
VerticalAndRightHorizontalScroll = 0x29,
VerticalAndLeftHorizontalScroll = 0x2a,
};
// Controls the SSD1306 128x32 OLED display via i2c
#ifndef SSD1306_ADDRESS
#define SSD1306_ADDRESS 0x3C
#endif
#define DisplayHeight 32
#define DisplayWidth 128
#define FontHeight 8
#define FontWidth 6
#define MatrixRows (DisplayHeight / FontHeight)
#define MatrixCols (DisplayWidth / FontWidth)
struct CharacterMatrix {
uint8_t display[MatrixRows][MatrixCols];
uint8_t *cursor;
bool dirty;
};
struct CharacterMatrix display;
bool iota_gfx_init(bool rotate);
void iota_gfx_task(void);
bool iota_gfx_off(void);
bool iota_gfx_on(void);
void iota_gfx_flush(void);
void iota_gfx_write_char(uint8_t c);
void iota_gfx_write(const char *data);
void iota_gfx_write_P(const char *data);
void iota_gfx_clear_screen(void);
void iota_gfx_task_user(void);
void matrix_clear(struct CharacterMatrix *matrix);
void matrix_write_char_inner(struct CharacterMatrix *matrix, uint8_t c);
void matrix_write_char(struct CharacterMatrix *matrix, uint8_t c);
void matrix_write(struct CharacterMatrix *matrix, const char *data);
void matrix_write_ln(struct CharacterMatrix *matrix, const char *data);
void matrix_write_P(struct CharacterMatrix *matrix, const char *data);
void matrix_render(struct CharacterMatrix *matrix);
#endif